UNT Libraries - 51 Matching Results

Search Results

Ádám's Conjecture and Its Generalizations

Description: This paper examines idam's conjuecture and some of its generalizations. In terms of Adam's conjecture, we prove Alspach and Parson's results f or Zpq and ZP2. More generally, we prove Babai's characterization of the CI-property, Palfy's characterization of CI-groups, and Brand's result for Zpr for polynomial isomorphism's. We also prove for the first time a characterization of the CI-property for 1 SG, and prove that Zn is a CI-Pn-group where Pn is the group of permutation polynomials on Z,, and n is square free.
Date: August 1990
Creator: Dobson, Edward T. (Edward Tauscher)

Algebraic Number Fields

Description: This thesis investigates various theorems on polynomials over the rationals, algebraic numbers, algebraic integers, and quadratic fields. The material selected in this study is more of a number theoretical aspect than that of an algebraic structural aspect. Therefore, the topics of divisibility, unique factorization, prime numbers, and the roots of certain polynomials have been chosen for primary consideration.
Date: August 1991
Creator: Hartsell, Melanie Lynne

Characterizations of Some Combinatorial Geometries

Description: We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic.
Date: August 1992
Creator: Yoon, Young-jin

The Computation of Ultrapowers by Supercompactness Measures

Description: The results from this dissertation are a computation of ultrapowers by supercompactness measures and concepts related to such measures. The second chapter gives an overview of the basic ideas required to carry out the computations. Included are preliminary ideas connected to measures, and the supercompactness measures. Order type results are also considered in this chapter. In chapter III we give an alternate characterization of 2 using the notion of iterated ordinal measures. Basic facts related to this characterization are also considered here. The remaining chapters are devoted to finding bounds fwith arguments taking place both inside and outside the ultrapowers. Conditions related to the upper bound are given in chapter VI.
Date: August 1999
Creator: Smith, John C.

A Continuous, Nowhere-Differentiable Function with a Dense Set of Proper Local Extrema

Description: In this paper, we use the following scheme to construct a continuous, nowhere-differentiable function 𝑓 which is the uniform limit of a sequence of sawtooth functions 𝑓ₙ : [0, 1] → [0, 1] with increasingly sharp teeth. Let 𝑋 = [0, 1] x [0, 1] and 𝐹(𝑋) be the Hausdorff metric space determined by 𝑋. We define contraction maps 𝑤₁ , 𝑤₂ , 𝑤₃ on 𝑋. These maps define a contraction map 𝑤 on 𝐹(𝑋) via 𝑤(𝐴) = 𝑤₁(𝐴) ⋃ 𝑤₂(𝐴) ⋃ 𝑤₃(𝐴). The iteration under 𝑤 of the diagonal in 𝑋 defines a sequence of graphs of continuous functions 𝑓ₙ. Since 𝑤 is a contraction map in the compact metric space 𝐹(𝑋), 𝑤 has a unique fixed point. Hence, these iterations converge to the fixed point-which turns out to be the graph of our continuous, nowhere-differentiable function 𝑓. Chapter 2 contains the background we will need to engage our task. Chapter 3 includes two results from the Baire Category Theorem. The first is the well known fact that the set of continuous, nowhere-differentiable functions on [0,1] is a residual set in 𝐶[0,1]. The second fact is that the set of continuous functions on [0,1] which have a dense set of proper local extrema is residual in 𝐶[0,1]. In the fourth and last chapter we actually construct our function and prove it is continuous, nowhere-differentiable and has a dense set of proper local extrema. Lastly we iterate the set {(0,0), (1,1)} under 𝑤 and plot its points. Any terms not defined in Chapters 2 through 4 may be found in [2,4]. The same applies to the basic properties of metric spaces which have not been explicitly stated. Throughout, we will let 𝒩 and 𝕽 denote the natural numbers and the real numbers, respectively.
Date: December 1993
Creator: Huggins, Mark C. (Mark Christopher)

Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere

Description: In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager.
Date: December 1994
Creator: Lee, Jae S. (Jae Seung)

The Continuous Wavelet Transform and the Wave Front Set

Description: In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.
Date: December 1993
Creator: Navarro, Jaime

Countable Additivity, Exhaustivity, and the Structure of Certain Banach Lattices

Description: The notion of uniform countable additivity or uniform absolute continuity is present implicitly in the Lebesgue Dominated Convergence Theorem and explicitly in the Vitali-Hahn-Saks and Nikodym Theorems, respectively. V. M. Dubrovsky studied the connection between uniform countable additivity and uniform absolute continuity in a series of papers, and Bartle, Dunford, and Schwartz established a close relationship between uniform countable additivity in ca(Σ) and operator theory for the classical continuous function spaces C(K). Numerous authors have worked extensively on extending and generalizing the theorems of the preceding authors. Specifically, we mention Bilyeu and Lewis as well as Brooks and Drewnowski, whose efforts molded the direction and focus of this paper. This paper is a study of the techniques used by Bell, Bilyeu, and Lewis in their paper on uniform exhaustivity and Banach lattices to present a Banach lattice version of two important and powerful results in measure theory by Brooks and Drewnowski. In showing that the notions of exhaustivity and continuity take on familiar forms in certain Banach lattices of measures they show that these important measure theory results follow as corollaries of the generalized Banach lattice versions. This work uses their template to generalize results established by Bator, Bilyeu, and Lewis.
Date: August 1999
Creator: Huff, Cheryl Rae

Cycles and Cliques in Steinhaus Graphs

Description: In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.
Date: December 1994
Creator: Lim, Daekeun

Descriptions and Computation of Ultrapowers in L(R)

Description: The results from this dissertation are an exact computation of ultrapowers by measures on cardinals $\aleph\sb{n},\ n\in w$, in $L(\IR$), and a proof that ordinals in $L(\IR$) below $\delta\sbsp{5}{1}$ represented by descriptions and the identity function with respect to sequences of measures are cardinals. An introduction to the subject with the basic definitions and well known facts is presented in chapter I. In chapter II, we define a class of measures on the $\aleph\sb{n},\ n\in\omega$, in $L(\IR$) and derive a formula for an exact computation of the ultrapowers of cardinals by these measures. In chapter III, we give the definitions of descriptions and the lowering operator. Then we prove that ordinals represented by descriptions and the identity function are cardinals. This result combined with the fact that every cardinal $<\delta\sbsp{5}{1}$ in $L(\IR$) is represented by a description (J1), gives a characterization of cardinals in $L(\IR$) below $\delta\sbsp{5}{1}. Concrete examples of formal computations are shown in chapter IV.
Date: August 1995
Creator: Khafizov, Farid T.

Duals and Reflexivity of Certain Banach Spaces

Description: The purpose of this paper is to explore certain properties of Banach spaces. The first chapter begins with basic definitions, includes examples of Banach spaces, and concludes with some properties of continuous linear functionals. In the second chapter, dimension is discussed; then one version of the Hahn-Banach Theorem is presented. The third chapter focuses on dual spaces and includes an example using co, RI, and e'. The role of locally convex spaces is also explored in this chapter. In the fourth chapter, several more theorems concerning dual spaces and related topologies are presented. The final chapter focuses on reflexive spaces. In the main theorem, the relation between compactness and reflexivity is examined. The paper concludes with an example of a non-reflexive space.
Date: August 1991
Creator: Dahler, Cheryl L. (Cheryl Lewis)

The Eulerian Functions of Cyclic Groups, Dihedral Groups, and P-Groups

Description: In 1935, Philip Hall developed a formula for finding the number of ways of generating the group of symmetries of the icosahedron from a given number of its elements. In doing so, he defined a generalized Eulerian function. This thesis uses Hall's generalized Eulerian function to calculate generalized Eulerian functions for specific groups, namely: cyclic groups, dihedral groups, and p- groups.
Date: August 1992
Creator: Sewell, Cynthia M. (Cynthia Marie)

Existence of a Sign-Changing Solution to a Superlinear Dirichlet Problem

Description: We study the existence, multiplicity, and nodal structure of solutions to a superlinear elliptic boundary value problem. Under specific hypotheses on the superlinearity, we show that there exist at least three nontrivial solutions. A pair of solutions are of one sign (positive and negative respectively), and the third solution changes sign exactly once. Our technique is variational, i.e., we study the critical points of the associated action functional to find solutions. First, we define a codimension 1 submanifold of a Sobolev space . This submanifold contains all weak solutions to our problem, and in our case, weak solutions are also classical solutions. We find nontrivial solutions which are local minimizers of our action functional restricted to various subsets of this submanifold. Additionally, if nondegenerate, the one-sign solutions are of Morse index 1 and the sign-changing solution has Morse index 2. We also establish that the action level of the sign-changing solution is bounded below by the sum of the two lesser levels of the one-sign solutions. Our results extend and complement the findings of Z. Q. Wang ([W]). We include a small sample of earlier works in the general area of superlinear elliptic boundary value problems.
Date: August 1995
Creator: Neuberger, John M. (John Michael)

Explicit Multidimensional Solitary Waves

Description: In this paper we construct explicit examples of solutions to certain nonlinear wave equations. These semilinear equations are the simplest equations known to possess localized solitary waves in more that one spatial dimension. We construct explicit localized standing wave solutions, which generate multidimensional localized traveling solitary waves under the action of velocity boosts. We study the case of two spatial dimensions and a piecewise-linear nonlinearity. We obtain a large subset of the infinite family of standing waves, and we exhibit several interesting features of the family. Our solutions include solitary waves that carry nonzero angular momenta in their rest frames. The spatial profiles of these solutions also furnish examples of symmetry breaking for nonlinear elliptic equations.
Date: August 1990
Creator: King, Gregory B. (Gregory Blaine)

A Generalization of Sturmian Sequences: Combinatorial Structure and Transcendence

Description: We investigate a class of minimal sequences on a finite alphabet Ak = {1,2,...,k} having (k - 1)n + 1 distinct subwords of length n. These sequences, originally defined by P. Arnoux and G. Rauzy, are a natural generalization of binary Sturmian sequences. We describe two simple combinatorial algorithms for constructing characteristic Arnoux-Rauzy sequences (one of which is new even in the Sturmian case). Arnoux-Rauzy sequences arising from fixed points of primitive morphisms are characterized by an underlying periodic structure. We show that every Arnoux-Rauzy sequence contains arbitrarily large subwords of the form V^2+ε and, in the Sturmian case, arbitrarily large subwords of the form V^3+ε. Finally, we prove that an irrational number whose base b-digit expansion is an Arnoux-Rauzy sequence is transcendental.
Date: August 1998
Creator: Risley, Rebecca N.

Generalized Function Solutions to Nonlinear Wave Equations with Distribution Initial Data

Description: In this study, we consider the generalized function solutions to nonlinear wave equation with distribution initial data. J. F. Colombeau shows that the initial value problem u_tt - Δu = F(u); m(x,0) = U_0; u_t (x,0) = i_1 where the initial data u_0 and u_1 are generalized functions, has a unique generalized function solution u. Here we take a specific F and specific distributions u_0, u_1 then inspect the generalized function representatives for the initial value problem solution to see if the generalized function solution is a distribution or is more singular. Using the numerical technics, we show for specific F and specific distribution initial data u_0, u_1, there is no distribution solution.
Date: August 1996
Creator: Kim, Jongchul

Haar Measure on the Cantor Ternary Set

Description: The purpose of this thesis is to examine certain questions concerning the Cantor ternary set. The second chapter deals with proving that the Cantor ternary set is equivalent to the middle thirds set of [0,1], closed, compact, and has Lebesgue measure zero. Further a proof that the Cantor ternary set is a locally compact, Hausdorff topological group is given. The third chapter is concerned with establishing the existence of a Haar integral on certain topological groups. In particular if G is a locally compact and Hausdorff topological group, then there is a non-zero translation invariant positive linear form on G. The fourth chapter deals with proving that for any Haar integral I on G there exists a unique Haar measure on G that represents I.
Date: August 1990
Creator: Naughton, Gerard P. (Gerard Peter)

Homotopies and Deformation Retracts

Description: This paper introduces the background concepts necessary to develop a detailed proof of a theorem by Ralph H. Fox which states that two topological spaces are the same homotopy type if and only if both are deformation retracts of a third space, the mapping cylinder. The concepts of homotopy and deformation are introduced in chapter 2, and retraction and deformation retract are defined in chapter 3. Chapter 4 develops the idea of the mapping cylinder, and the proof is completed. Three special cases are examined in chapter 5.
Date: December 1990
Creator: Stark, William D. (William David)

Hyperspaces of Continua

Description: Several properties of Hausdorff continua are considered in this paper. However, the major emphasis is on developing the properties of the hyperspaces 2x and C(X) of a Hausdorff continuum X. Preliminary definitions and notation are introduced in Chapter I. Chapters II and III deal with the topological structure of the hyperspaces and the concept of topological convergence. Properties of 2x and C(X) are investigated in Chapter IV, while Chapters V and VI are devoted to the Hausdorff continuum X. Chapter VII consists of theorems pertaining to Whitney maps and order arcs in 2x. Examples of C(X) are provided in Chapter VIII. Inverse sequences of Hausdorff continua and of their hyperspaces are considered in Chapter IX.
Date: August 1990
Creator: Simmons, Charlotte

Intuition versus Formalization: Some Implications of Incompleteness on Mathematical Thought

Description: This paper describes the tension between intuition about number theory and attempts to formalize it. I will first examine the root of the dilemma, Godel's First Incompleteness Theorem, which demonstrates that in any reasonable formalization of number theory, there will be independent statements. After proving the theorem, I consider some of its consequences on intuition, focusing on Freiling's "Dart Experiment" which is based on our usual notion of the real numbers as a line. This experiment gives an apparent refutation of the Axiom of Choice and the Continuum Hypothesis; however, it also leads to an equally apparent paradox. I conclude that such paradoxes are inevitable as the formalization of mathematics takes us further from our initial intuitions.
Date: August 1994
Creator: Lindman, Phillip A. (Phillip Anthony)

Manifolds, Vector Bundles, and Stiefel-Whitney Classes

Description: The problem of embedding a manifold in Euclidean space is considered. Manifolds are introduced in Chapter I along with other basic definitions and examples. Chapter II contains a proof of the Regular Value Theorem along with the "Easy" Whitney Embedding Theorem. In Chapter III, vector bundles are introduced and some of their properties are discussed. Chapter IV introduces the Stiefel-Whitney classes and the four properties that characterize them. Finally, in Chapter V, the Stiefel-Whitney classes are used to produce a lower bound on the dimension of Euclidean space that is needed to embed real projective space.
Date: August 1990
Creator: Green, Michael Douglas, 1965-