UNT Libraries - Browse


Nanoparticles Engineered to Bind Serum Albumin: Microwave Assisted Synthesis, Characterization, and Functionalization of Fluorescently-Labeled, Acrylate-Based, Polymer Nanoparticles

Description: The potential use of polymeric, functionalized nanoparticles (NPs) as drug delivery vectors was explored. Covalent conjugation of albumin to the surface of NPs via maleimide chemistry proved problematic. However, microwave assisted synthesis of NPs was not only time efficient, but enabled the exploration of size control by changing the following parameters: temperature, microwave power, reaction time, initiator concentration, and percentage of monomer used. About 1.5 g of fluorescently-labeled, carboxylic acid-functionalized NPs (100 nm diameter) were synthesized for a total cost of less than $1. Future work will address further functionalization of the NPs for the coupling of albumin (or other targeted proteins), and tests for in vivo biodistribution.
Date: August 2010
Creator: Hinojosa, Barbara R.

Synthesis and Screening of a Combinatorial Peptide Library for Ligands to Target Transferrin: Miniaturizing the Library

Description: Combinatorial libraries are used in the search for ligands that bind to target proteins. Fmoc solid-phase peptide synthesis is routinely used to generate such libraries. Microwave-assisted peptide synthesis was employed here to decrease reaction times by 80-90%. Two One-Bead-One-Compound combinatorial libraries were synthesized on 130μm beads (one containing 750 members and the other 16, 807). The use of smaller solid supports would have many important practical advantages including; increased library diversity per unit mass, smaller quantities of library needed to generate hits, and screening could be conducted by using a standard flow cytometer. To this end, a miniaturized peptide library was synthesized on 20 μm beads to demonstrate proof of principle. A small sample from the 16,807-member library was screened against transferrin-AlexaFluro 647, a protein responsible for iron transport in vivo. A number of hits were identified and sequenced using techniques coupling nanomanipulation with nanoelectrospray mass spectrometry.
Date: August 2010
Creator: Brown, Jennifer Marie