UNT Libraries - Browse


Workfunction tuning of AZO Films Through Surface Modification for Anode Application in OLEDs.

Description: Widespread use of organic light emitting diodes (OLEDs) in solid state lighting and display technologies require efficiency and lifetime improvements, as well as cost reductions, inclusive of the transparent conducting oxide (TCO). Indium tin oxide (ITO) is the standard TCO anode in OLEDs, but indium is expensive and the Earth's reserve of this element is limited. Zinc oxide (ZnO) and its variants such as aluminum-doped ZnO (AZO) exhibit comparable electrical conductivity and transmissivity to ITO, and are of interest for TCO applications. However, the workfunction of ZnO and AZO is smaller compared to ITO. The smaller workfunction of AZO results in a higher hole injection barrier at the anode/organic interface, and methods of tuning its workfunction are required. This dissertation tested the hypothesis that workfunction tuning of AZO films could be achieved by surface modification with electronegative oxygen and fluorine plasmas, or, via use of nanoscale transition metal oxide layers (MoOx, VOx and WOx). Extensive UPS, XPS and optical spectroscopy studies indicate that O2 and CFx plasma treatment results in an electronegative surface, surface charge redistribution, and a surface dipole moment which reinforces the original surface dipole leading to workfunction increases. Donor-like gap states associated with partially occupied d-bands due to non-stoichiometry determine the effective increased workfunction of the AZO/transition-metal oxide stacks. Reduced hole injection barriers were engineered by ensuring that the surface ad-layers were sufficiently thin to facilitate Fowler-Nordheim tunneling. Improved band alignments resulted in improved hole injection from the surface modified AZO anodes, as demonstrated by I-V characterization of hole only structures. Energy band alignments are proposed based on the aforementioned spectroscopies. Simple bilayer OLEDs employing the surface modified AZO anodes were fabricated and characterized to compare their performance with standard ITO. Anodes consisting of AZO with MoOx or VOx interfacial layers exhibited 50% and 71% improvement in ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Jha, Jitendra

Enhancement of Light Emission from Metal Nanoparticles Embedded Graphene Oxide

Description: A fully oxidized state of graphene behaves as a pure insulating while a pristine graphene behaves as a pure conducting. The in-between oxide state in graphene which is the controlled state of oxide behaves as a semiconducting. This is the key condition for tuning optical band gap for the better light emitting property. The controlling method of oxide in graphene structure is known as reduction which is the mixed state of sp2 and sp3 hybrid state in graphene structure. sp2 hybridized domains correspond to pure carbon-carbon bond i.e. pristine graphene while sp3 hybridized domains correspond to the oxide bond with carbon i.e. defect in graphene structure. This is the uniqueness of the graphene-base material. Graphene is a gapless material i.e. having no bandgap energy and this property prevents it from switching device applications and also from the optoelectronic devices applications. The main challenge for this material is to tune as a semiconducting which can open the optical characteristics and emit light of desired color. There may be several possibilities for the modification of graphene-base material that can tune a band gap. One way is to find semiconducting property by doping the defects into pristine graphene structure. Other way is oxides functional groups in graphene structure behaves as defects. The physical properties of graphene depend on the amount of oxides present in graphene structure. So if there are more oxides in graphene structure then this material behaves as a insulating. By any means if it can be reduced then oxides amount to achieve specific proportion of sp2 and sp3 that can emit light of desired color. Further, after achieving light emission from graphene base material, there is more possibility for the study of non-linear optical property. In this work, plasmonic effect in graphene oxide has been focused. Mainly there are two ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Karna, Sanjay K

Interspecimen Study of Bone to Relate Macromechanical, Nanomechanical and Compositional Changes Across the Femoral Cortex of Bone

Description: Mechanics of bone is widely studied and researched, mainly for the study of fracture. This has been done mostly on a macro scale. In this work hierarchical nature of bone has been explored to investigate bone mechanics in more detail. Flexural test were done to classify the bones according to their strength and deflection. Raman spectroscopy analysis was done to map the mineralization, collagen crosslinking changes across the thickness of the bone. Nanoindentation was done to map indentation hardness and indentation modulus across femoral cortex of the bone. The results indicate that the composition of the bone changes across the thickness of the femoral cortex. The hypothesis is confirmed as increase in mineralization, carbonate to phosphate ratio and collagen crosslinking shows the effect as increased indentation hardness and modulus and decreased deflection.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2013
Creator: Nar, Mangesh

First Principle Calculations of the Structure and Electronic Properties of Pentacene Based Organic and ZnO Based Inorganic Semiconducting Materials

Description: In this thesis, I utilize first principles density functional theory (DFT) based calculations to investigate the structure and electronic properties including charge transfer behaviors and work function of two types of materials: pentacene based organic semiconductors and ZnO transparent conducting oxides, with an aim to search for high mobility n-type organic semiconductors and fine tuning work functions of ZnO through surface modifications. Based on DFT calculations of numerous structure combinations, I proposed a pentacene and perfluoro-pentacene alternating hybrid structures as a new type of n-type semiconductor. Based on the DFT calculations and Marcus charge transfer theory analysis, the new structure has high charge mobility and can be a promising new n-type organic semiconductor material. DFT calculations have been used to systematically investigate the effect of surface organic absorbate and surface defects on the work function of ZnO. It was found that increasing surface coverage of organic groups and decreasing surface defects lead to decrease of work functions, in excellent agreement with experimental results. First principles based calculations thus can greatly contribute to the investigating and designing of new electronic materials.
Date: May 2012
Creator: Li, Yun

Advanced Technology for Source Drain Resistance Reduction in Nanoscale FinFETs

Description: Dual gate MOSFET structures such as FinFETs are widely regarded as the most promising option for continued scaling of silicon based transistors after 2010. This work examines key process modules that enable reduction of both device area and fin width beyond requirements for the 16nm node. Because aggressively scaled FinFET structures suffer significantly degraded device performance due to large source/drain series resistance (RS/D), several methods to mitigate RS/D such as maximizing contact area, silicide engineering, and epitaxially raised S/D have been evaluated.
Date: May 2008
Creator: Smith, Casey Eben

Orientation, Microstructure and Pile-Up Effects on Nanoindentation Measurements of FCC and BCC Metals

Description: This study deals with crystal orientation effect along with the effects of microstructure on the pile-ups which affect the nanoindentation measurements. Two metal classes, face centered cubic (FCC) and body centered cubic (BCC, are dealt with in the present study. The objective of this study was to find out the degree of inaccuracy induced in nanoindentation measurements by the inherent pile-ups and sink-ins. Also, it was the intention to find out how the formation of pile-ups is dependant upon the crystal structure and orientation of the plane of indentation. Nanoindentation, Nanovision, scanning electron microscopy, electron dispersive spectroscopy and electron backscattered diffraction techniques were used to determine the sample composition and crystal orientation. Surface topographical features like indentation pile-ups and sink-ins were measured and the effect of crystal orientation on them was studied. The results show that pile-up formation is not a random phenomenon, but is quite characteristic of the material. It depends on the type of stress imposed by a specific indenter, the depth of penetration, the microstructure and orientation of the plane of indentation. Pile-ups are formed along specific directions on a plane and this formation as well as the pile-up height and the contact radii with the indenter is dependant on the aforesaid parameters. These pile-ups affect the mechanical properties like elastic modulus and hardness measurements which are pivotal variables for specific applications in micro and nano scale devices.
Date: May 2008
Creator: Srivastava, Ashish Kumar

Polyethylene-layered double hydroxide and montmorillonite nanocomposites: Thermal, mechanical and flame retardance properties.

Description: The effect of incorporation two clays; layered double hydroxides (LDH) and montmorillonite layered silicates (MLS) in linear low density polyethylene (PE) matrix was investigated. MLS and LDH were added of 5, 15, 30 and 60 weight percent in the PE and compounded using a Brabender. Ground pellets were subsequently compression molded. Dispersion of the clays was analyzed using optical microscopy, SEM and XRD. Both the layered clays were immiscible with the PE matrix and agglomerates formed with increased clay concentration. The thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Both clays served as nucleation enhancers increasing recrystallization temperatures in the composites. Flame retarding properties were determined by using the flammability HVUL-94 system. LDH indicated better flame retarding properties than MLS for PE. The char structure was analyzed by environmental scanning electron microscopy. Mechanical properties were studied by tensile testing and Vickers microhardness testing apparatus.
Date: May 2008
Creator: Kosuri, Divya