UNT Libraries - 4 Matching Results

Search Results

Characterization of Cure Kinetics and Physical Properties of a High Performance, Glass Fiber-Reinforced Epoxy Prepreg and a Novel Fluorine-Modified, Amine-Cured Commercial Epoxy.

Description: Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network was tested for wear resistance using tribological techniques. Of the six anilines, 3-fluoroaniline and 4-fluoroaniline were determined to have lower wear than the ...
Date: December 2003
Creator: Bilyeu, Bryan

Charge Interaction Effects in Epoxy with Cation Exchanged Montmorillonite Clay and Carbon Nanotubes.

Description: The influence of charge heterogeneity in nanoparticles such as montmorillonite layered silicates (MLS) and hybrid systems of MLS + carbon nanotubes was investigated in cured and uncured epoxy. Epoxy nanocomposites made with cation-exchanged montmorillonite clay were found to form agglomerates near a critical concentration. Using differential scanning calorimetry it was determined that the mixing temperature of the epoxy + MLS mixture prior to the addition of the curing agent critically influenced the formation of the agglomerate. Cured epoxy samples showed evidence of the agglomerate being residual charge driven by maxima and minima in the concentration profiles of thermal conductivity and dielectric permittivity respectively. A hybrid nanocomposite of MLS and aniline functionalized multi walled nanotubes indicated no agglomerates. The influence of environmentally and process driven properties on the nanocomposites was investigated by examination of moisture, ultrasound, microwaves and mechanical fatigue on the properties of the hybrid systems. The results point to the importance of charge screening by adsorbed or reacted water and on nanoparticulates.
Date: May 2005
Creator: Butzloff, Peter Robert

Investigation of growth kinetics of self-assembling monolayers by means of contact angle, optical ellipsometry, angle-resolved XPS and IR spectroscopy.

Description: Absorption of octadecanethiol and p-nitrobenzenethiol onto gold surfaces from ethanol solutions has been studied by means of contact angle, optical ellipsometry, angle-resolved XPS (ARXPS), and with grazing angle total reflection FTIR. Growth of the monolayers from dilute solutions has been monitored and Langmuir isotherm adsorption curves were fitted to experimental data. A saturated film is formed within approximately 5h after immersion in solutions of concentrations ranging from 0.0005mM to 0.01mM. We found, that the final density of monolayer depends on the concentration of the solution.
Date: August 2004
Creator: Jakubowicz, Agnieszka

Modifications of epoxy resins for improved mechanical and tribological performances and their effects on curing kinetics.

Description: A commercial epoxy, diglycidyl ether of bisphenol-A, was modified by two different routes. One was the addition of silica to produce epoxy composites. Three different silane coupling agents, glycidyloxypropyl trimethoxy silane (GPS), -methacryloxypropyl trimethoxy silane (MAMS) and 3-mercaptopropyltriethoxy silane (MPS), were used as silica-surface modifiers. The effects of silica content, together with the effects of chemical surface treatment of silica, were studied. The results indicate that epoxy composites with silica exhibit mechanical and tribological properties as well as curing kinetics different than the pure epoxy. The optimum silica content for improved mechanical and tribological properties (low friction coefficient and wear rate) was different for each type of silane coupling agent. An unequivocal correlation between good mechanical and improved tribological properties was not found. Activation energy of overall reactions was affected by the addition of silica modified with MAMS and MPS, but not with GPS. The second route was modification by fluorination. A new fluoro-epoxy oligomer was synthesized and incorporated into a commercial epoxy by a conventional blending method. The oligomer functioned as a catalyst in the curing of epoxy and polyamine. Thermal stability of the blends decreased slightly at a high oligomer content. Higher wear resistance, lower friction coefficient and higher toughness were found with increasing oligomer content; thus in this case there was a correlation between good mechanical and improved tribological properties. The results indicated that increasing toughness and formation of a transfer film contribute to improved tribological performances.
Date: May 2008
Creator: Chonkaew, Wunpen