UNT Libraries - 83 Matching Results

Search Results

Implementation of an Unmanned Aerial Vehicle for New Generation Peterbilt Trucks

Description: As science and technology continue to advance, innovative developments in transportation can enhance product safety and security for the benefit and welfare of society. The federal government requires every commercial truck to be inspected before each trip. This pre-trip inspection ensures the safe mechanical condition of each vehicle before it is used. An Unmanned Aerial Vehicle (UAV) could be used to provide an automated inspection, thus reducing driver workload, inspection costs and time while increasing inspection accuracy. This thesis develops a primary component of the algorithm that is required to implement UAV pre-trip inspections for commercial trucks using an android-based application. Specifically, this thesis provides foundational work of providing stable height control in an outdoor environment using a laser sensor and an android flight control application that includes take-off, landing, throttle control, and real-time video transmission. The height algorithm developed is the core of this thesis project. Phantom 2 Vision+ uses a pressure sensor to calculate the altitude of the drone for height stabilization. However, these altitude readings do not provide the precision required for this project. Rather, the goal of autonomously controlling height with great precision necessitated the use of a laser rangefinder sensor in the development of the height control algorithm. Another major contribution from this thesis research is to extend the limited capabilities of the DJI software development kit in order to provide more sophisticated control goals without modifying the drone dynamics. The results of this project are also directly applicable to a number of additional uses of drones in the transportation industry.
Date: May 2016
Creator: Srinivasan K, Venkatesh

AirSniffer: A Smartphone-Based Sensor Module for Personal Micro-Climate Monitoring

Description: Environmental factors can have a significant impact on an individual's health and well-being, and a primary characteristic of environments is air quality. Air sensing equipment is available to the public, but it is often expensive,stationary, or unusable for persons without technical expertise. The goal of this project is to develop an inexpensive and portable sensor module for public use. The system is capable of measuring temperature in Celsius and Fahrenheit, heat index, relative humidity, and carbon dioxide concentration. The sensor module, referred to as the "sniffer," consists of a printed circuit board that interconnects a carbon dioxide sensor, a temperature/humidity sensor, an Arduino microcontroller, and a Bluetooth module. The sniffer is small enough to be worn as a pendant or a belt attachment, and it is rugged enough to consistently collect and transmit data to a user's smartphone throughout their workday. The accompanying smartphone app uses Bluetooth and GPS hardware to collect data and affix samples with a time stamp and GPS coordinates. The accumulated sensor data is saved to a file on the user's phone, which is then examined on a standard computer.
Date: May 2016
Creator: Smith, Jeffrey Paul

Measurement and Analysis of Indoor Air Quality Conditions

Description: More than 80% of the people in urban regions and about 98% of cities in low and middle income countries have poor air quality according to the World Health Organization. People living in such environment suffer from many disorders like a headache, shortness of breath or even the worst diseases like lung cancer, asthma etc. The main objective of the thesis is to create awareness about the air quality and the factors that are causing air pollution to the people which is really important and provide tools at their convenience to measure and analyze the air quality. Taking real time air quality scenarios, various experiments were made using efficient sensors to study both the indoor and outdoor air quality. These experimental results will eventually help people to understand air quality better. An outdoor air quality data measurement system is developed in this research using Python programming to provide people an opportunity to retrieve and manage the air quality data and get the concentrations of the leading pollutants. The entire designing of the program is made to run with the help of a graphical user interface tool for the user, as user convenience is considered as one of the objectives of the thesis. A graphical user interface is made for the user convenience to visualize graphically the data from the database. The designed system is tested and used for the measurement and analysis of the outdoor air quality. This data will be available in the database so it can be used for analyzing the air quality data for several days or months or years. Using the GrayWolf system and the designed outdoor air quality data measurement system, both the indoor and outdoor air quality was measured to analyze and correlate.
Date: August 2016
Creator: Chidurala, Veena

Wireless Signal Conditioning

Description: This thesis presents a new approach to extend and reduce the transmission range in wireless systems. Conditioning is defined as purposeful electromagnetic interference that affects a wireless signal as it propagates through the air. This interference can be used constructively to enhance a signal and increase its energy, or destructively to reduce energy. The constraints and limitations of the technology are described as a system model, and a flow chart is used to describe the circuit process. Remaining theoretical in nature, practical circuit implementations are foregone in the interest of elementary simulations depicting the interactions of modulated signals as they experience phase mismatch. Amplitude modulation and frequency modulation are explored with using both positive and negative conditioning, and conclusions to whether one is more suitable than the other are made.
Date: August 2016
Creator: Valero, Daniel

The Modeling and Simulation of EV3 Motor Dynamics

Description: This paper describes a procedure to find the transfer function for the Lego Mindstorms Ev3. Lego Mindstorms Ev3 can serve as the platform for a system modeling and a controller design course. It is economical and accessible. It is also very compatible with Matlab and Simulink. This platform can be used for concepts of modeling, feedback, and controller design. The main approach in this work focuses on the closed loop instead of open loop. Although this approach turns the problem into a more complicated puzzle, it reveals more details. In this work, different techniques have been used, such as time domain, root locus, and least square estimation. Different tools have also been utilized such as Matlab SISO tool, the Matlab System Identification tool, and Simulink. These methods and implementations assisted to acquire different types of transfer functions for the system. By simulating the transfer functions and comparing them with experimental studies, the matching scores were calculated to decide on the best transfer function. Finding the finest transfer function for this gadget enables us to prepare diverse practical undergraduate and graduate curricula.
Date: August 2016
Creator: Norouzi Kandalan, Roya

Analysis of Pre-ictal and Non-Ictal EEG Activity: An EMOTIV and LabVIEW Approach

Description: In the past few years, the study of electrical activity in the brain and its interactions with the body has become popular among researchers. One of the hottest topics related to brain activity is the epileptic seizure prediction. Currently, there are several techniques on how to predict a seizure; however, most of the techniques found in research papers are just mathematical models and not system implementations. The seizure prediction approach proposed in this thesis paper is achieved using the EMOTIV Epoc+ headset, MATLAB, and LabVIEW as the analog and digital signal processing devices. In addition, this thesis project incorporates the use of the Hilbert Huang transform (HHT) method to obtain intrinsic mode functions (IMF) and instantaneous frequency components of the transform. From the IMFs, features as variation coefficient (VC) and fluctuation indexes (FI) are extracted to feed a support vector machine that classifies the EEG data as pre-ictal and non-ictal EEGs. Outstanding patterns in non-ictal and pre-ictal are observed and demonstrated by significant differences between both types of EEG signals. In other words, a classification of EEG signals according to a category can be achieved proving that an epileptic seizure prediction technology has a future in engineering and biotechnology fields.
Date: December 2016
Creator: Medina, Oscar F

A 018μm Cmos Transmitter for Ecg Signals

Description: Electrocardiography (ECG) signal transmitter is the device used to transmit the electrical signals of the heart to the remote machine. These electrical signals are ECG signals caused due to electrical activities in the heart. ECG signals have very low amplitude and frequency; hence amplification of the signals is needed to strengthen the signal. Conversion of the amplified signal into digital information and transmitting that information without losing any data is the key. This information is further used in monitoring the heart.
Date: December 2013
Creator: Kakarna, Tejaswi

Quantitative Correlation Analysis of Motor and Dysphonia Features of Parkinsons Disease

Description: The research reported here deals with the early characterization of Parkinson’s disease (PD), the second most common degenerative disease of the human motor system after Alzheimer’s. PD results from the death of dopaminergic neurons in the substantia nigra region of the brain. Its occurrence is highly correlated with the aging population whose numbers increase with the healthcare benefits of a longer life. Observation of motor control symptoms associated with PD, such as gait and speech analysis, is most often used to evaluate, detect, and diagnose PD. Since speech and some delicate motor functions have provided early detection signs of PD, reliable analysis of these features is a promising objective diagnostic technique for early intervention with any remedial measures. We implement and study here three PD diagnostic methods and their correlation between each other’s results and with the motor functions in subjects diagnosed with and without PD. One initial test documented well in the literature deals with feature analysis of voice during phonation to determine dysphonia measures. Features of the motor function of two fingers were extracted in tests titled “Motor function of alternating finger tapping on a computer keyboard” and “Motor function of the index and thumb finger tapping with an accelerometer”, that we objectively scripted. The voice dysphonia measures were extracted using various software packages like PRAAT, Wavesurfer, and Matlab. In the initial test, several robust feature selection algorithms were used to obtain an optimally selected subset of features. We were able to program distance classifiers, support vector machine (SVM), and hierarchical clustering discrimination approaches for the dichotomous identification of non-PD control subjects and people with Parkinson’s (PWP). Validation tests were implemented to verify the accuracy of the classification processes. We determined the extent of functional agreement between voice and motor functions by correlating test results.
Date: May 2015
Creator: Koduri, Balaram

Design of Multi Band Microwave Devices Using Coupled Line Transmission Lines

Description: Multi band technology helps in getting multiple operating frequencies using a single microwave device. This thesis presents the design of dual and tri band microwave devices using coupled transmission line structures. Chapter 2 presents the design of a novel dual band transmission line structure using coupled lines. In chapter 3, Design of a dual band branch line coupler and a dual band Wilkinson power divider are proposed using the novel dual band transmission line structure presented in the previous chapter. In chapter 4, Design of a tri band transmission line structure by extending the dual band structure is presented. The Conclusion and future work are presented in chapter 5.
Date: May 2015
Creator: Katakam, Sri

Airbourne WiFi Networks Through Directional Antenna: An Experimental Study

Description: In situations where information infrastructure is destroyed or not available, on-demand information infrastructure is pivotal for the success of rescue missions. In this paper, a drone-carried on demand information infrastructure for long-distance WiFi transmission system is developed. It can be used in the areas including emergency response, public event, and battlefield. The WiFi network can be connected to the Internet to extend WiFi access to areas where WiFi and other Internet infrastructures are not available. In order to establish a local area network to propagate WIFI service, directional antennas and wireless routers are used to create it. Due to unstable working condition on the flying drones, a precise heading turning stage is designed to maintain the two directional antennas facing to each other. Even if external interferences change the heading of the drones, the stages will automatically rotate back to where it should be to offset the bias. Also, to maintain the same flying altitude, a ground controller is designed to measure the height of the drones so that the directional antennas can communicate to each other successfully. To verify the design of the whole system, quite a few field experiments were performed. Experiments results indicates the design is reliable, viable and successful. Especially at disaster areas, it’ll help people a lot.
Date: May 2015
Creator: Gu, Yixin

Dual-Band Quarter Wavelength and Half Wavelength Microstrip Transmission Line Design

Description: The thesis represents the design for dual-band quarter wavelength and half wavelength microstrip transmission line. Chapter 2 proposed the design of a novel dual-band asymmetric pi-shaped short-circuited quarter wavelength microstrip transmission line working at frequencies 1GHz and 1.55 GHz for 50Ω transmission line and at frequencies 1GHz and 1.43GHz for 60Ω transmission line. Chapter 3 proposed the design of a novel dual-band quarter wavelength microstrip transmission line with asymmetrically allocated open stubs and short-circuited stubs working at frequencies 1GHz and 1.32GHz. Chapter 4 proposed the design of dual-band pi-shaped open stub half wavelength microstrip transmission line working at frequencies 1GHz and 2.07GHz. Numerical simulations are performed both in HyperLynx 3D EM and in circuit simulator ADS for all of the proposed designs to measure the return loss (S11) and insertion loss (S12) in dB and phase response for S12 in degree.
Date: May 2015
Creator: Imran, Md Asheque

Practical Robust MIMO OFDM Communication System for High-Speed Mobile Communication

Description: This thesis presents the design of a communication system (PRCS) which improves on all aspects of the current state of the art 4G communication system Long Term Evolution (LTE) including peak to average power ratio (PAPR), data reliability, spectral efficiency and complexity using the most recent state of the art research in the field combined with novel implementations. This research is relevant and important to the field of electrical and communication engineering because it provides benefits to consumers in the form of more reliable data with higher speeds as well as a reduced burden on hardware original equipment manufacturers (OEMs). The results presented herein show up to a 3 dB reduction in PAPR, less than 10-5 bit errors at 7.5 dB signal to noise ratio (SNR) using 4QAM, up to 3 times increased throughput in the uplink mode and 10 times reduced channel coding complexity.
Date: May 2015
Creator: Grabner, Mitchell John James

Design of Frequency Output Pressure Transducer

Description: Piezoelectricity crystal is used in different area in industry, such as downhole oil, gas industry, and ballistics. The piezoelectricity crystals are able to create electric fields due to mechanical deformation called the direct piezoelectric effect, or create mechanical deformation due to the effect of electric field called the indirect piezoelectric effect. In this thesis, piezoelectricity effect is the core part. There are 4 parts in the frequency output pressure transducer: two crystal oscillators, phase-locked loop (PLL), mixer, frequency counter. Crystal oscillator is used to activate the piezoelectricity crystal which is made from quartz. The resonance frequency of the piezoelectricity crystal will be increased with the higher pressure applied. The signal of the resonance frequency will be transmitted to the PLL. The function of the PLL is detect the frequency change in the input signal and makes the output of the PLL has the same frequency and same phase with the input signal. The output of the PLL will be transmitted to a Mixer. The mixer has two inputs and one output. One input signal is from the pressure crystal oscillator and another one is from the reference crystal oscillator. The frequency difference of the two signal will transmitted to the frequency counter from the output of the mixer. Thus, the frequency output pressure transducer with a frequency counter is a portable device which is able to measure the pressure without oscilloscope or computer.
Date: August 2015
Creator: Ma, Jinge

Design fully-integrated dual-band two-stage class-E CMOS PA

Description: In retrospect we can see that from the last century, wireless electronic technology has been in a rapid state of development. With the popularity of wireless communication, the power amplifier demand is rising. In general, magnitude, maximum noise figure, minimum noise figure, efficiency, and output power are important indicators of the amplifier. The IC industry is exploring how to reduce the additional cost and improve the high-frequency performance. Therefore, designing a strong adaptability and high cost performance of the PA has become a priority. As these technologies advance, the power amplifiers need to have better integration, lower cost, and lower power dissipation. Also, some special requirements are being asked in some areas, such as multi-mode and multi-band. In general, people have to use several power amplifiers parallel to frame a multifunction chip. Each of them working at different frequencies of interest has to have separate matching network, design, and area; also, the diversity amplifier prices will increase with the number of amplifiers, and its cost is also changed. In this thesis, because Class E power amplifier has lower power dissipation, 100% ideal efficiency, simple circuit structure, and strong applicability, the Class E is used as power amplifier in main stage. Moreover, in order to decrease input power and increase output power, the class A power amplifier is used as driver stage. It can use very small amount of power to provide a larger power. Moreover, we use a switched variable inductor and capacitor to constitute a dual band matching network which can let the PA work at more than one frequency. In fact, we design a Class A PA which is as a driver stage. Then, when we support 1 dBm input power, the driver stage can have 8 dBm output power. Also the output will be the input power ...
Date: August 2015
Creator: Zhao, Chao

A Preliminary Controller Design for Drone Carried Directional Communication System

Description: In this thesis, we conduct a preliminary study on the controller design for directional antenna devices carried by drones. The goal of the control system is to ensure the best alignment between two directional antennas so as to enhance the performance of air-to-air communication between the drones. The control system at the current stage relies on the information received from GPS devices. The control system includes two loops: velocity loop and position loop to suppress wind disturbances and to assure the alignment of two directional antennae. The simulation and animation of directional antennae alignment control for two-randomly moving drones was developed using SIMULINK. To facilitate RSSI-based antenna alignment control to be conducted in the future work, a study on initial scanning techniques is also included at the end of this thesis.
Date: August 2015
Creator: AL-Emrani, Firas

Modeling and Control of a Motor System Using the Lego EV3 Robot

Description: In this thesis, I present my work on the modeling and control of a motor system using the Lego EV3 robot. The overall goal is to apply introductory systems and controls engineering techniques for estimation and design to a real-world system. First I detail the setup of materials used in this research: the hardware used was the Lego EV3 robot; the software used was the Student 2014 version of Simulink; a wireless network was used to communicate between them using a Netgear WNA1100 wifi dongle. Next I explain the approaches used to model the robot’s motor system: from a description of the basic system components, to data collection through experimentation with a proportionally controlled feedback loop, to parameter estimation (through time-domain specification relationships, Matlab’s curve-fitting toolbox, and a formal least-squares parameter estimation), to the discovery of the effects of frictional disturbance and saturation, and finally to the selection and verification of the final model through comparisons of simulated step responses of the estimated models to the actual time response of the motor system. Next I explore three different types of controllers for use within the motor system: a proportional controller, a lead compensator, and a PID controller. I catalogue the design and performance results – both in simulation and on the real system – of each controller. One controller is then selected to be used within two Controls Systems Engineering final course projects, both involving the robot traveling along a predetermined route. The controller’s performance is analyzed to determine whether it improves upon the accumulation of error in the robot’s position when the projects are executed without control.
Date: August 2015
Creator: Mitchell, Ashley C.

Electronic Sound Analysis with Hardware System and Remote Internet Display

Description: Currently, standards from government agencies such as the National Institute for Occupation Safety and Health exist to aid in safeguarding individuals’ capacity for hearing, but only in factory settings in which large machines often produce loud levels of sound. Neglecting the fact that these preventative measures are only in place in the most limited of settings, no system currently exists to observe and report sound exposure levels in a manner timely or easily recognizable enough to adequately serve its purpose of hearing conservation. Musicians may also incur significant levels of risk for hearing loss in their day-to-day rehearsals and concerts, from high school marching bands to university wind bands. As a result, music school accrediting organizations such as the National Association of Schools of Music and even the European Union have begun taking steps meant to determine the risks associated with music. To meet these goals and improve upon current technologies, a system has been developed that electronically records sound levels utilizing modern hardware, increases the speed of reporting by transmitting data over computer networks and the Internet, and displays measures calculated from these data in a web browser for a highly viewable, user-friendly interface.
Date: August 2010
Creator: McCord, Cameron Forrest

Development of Indium Oxide Nanowires as Efficient Gas Sensors

Description: Crystalline indium oxide nanowires were synthesized following optimization of growth parameters. Oxygen vacancies were found to impact the optical and electronic properties of the as-grown nanowires. Photoluminescence measurements showed a strong U.V emission peak at 3.18 eV and defect peaks in the visible region at 2.85 eV, 2.66 eV and 2.5 eV. The defect peaks are attributed to neutral and charged states of oxygen vacancies. Post-growth annealing in oxygen environment and passivation with sulphur are shown to be effective in reducing the intensity of the defect induced emission. The as-grown nanowires connected in an FET type of configuration shows n-type conductivity. A single indium oxide nanowire with ohmic contacts was found to be sensitive to gas molecules adsorbed on its surface.
Date: December 2011
Creator: Gali, Pradeep

Development of Silicon Nanowire Field Effect Transistors

Description: An economically reliable technique for the synthesis of silicon nanowire was developed using silicon chloride as source material. The 30-40 micron long nanowires were found to have diameters ranging from 40 – 100 nm. An amorphous oxide shell covered the nanowires, post-growth. Raman spectroscopy confirmed the composition of the shell to be silicon-dioxide. Photoluminescence measurements of the as-grown nanowires showed green emission, attributed to the presence of the oxide shell. Etching of the oxide shell was found to decrease the intensity of green emission. n-type doping of the silicon nanowires was achieved using antimony as the dopant. The maximum dopant concentration was achieved by post-growth diffusion. Intrinsic nanowire parameters were determined by implementation of the as-grown and antimony doped silicon nanowires in field effect transistor configuration.
Date: December 2011
Creator: Nukala, Prathyusha

An Arduino Based Control System for a Brackish Water Desalination Plant

Description: Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.
Date: August 2015
Creator: Caraballo, Ginna

Parameter Estimation of Microwave Filters

Description: The focus of this thesis is on developing theories and techniques to extract lossy microwave filter parameters from data. In the literature, the Cauchy methods have been used to extract filters’ characteristic polynomials from measured scattering parameters. These methods are described and some examples are constructed to test their performance. The results suggest that the Cauchy method does not work well when the Q factors representing the loss of filters are not even. Based on some prototype filters and the relationship between Q factors and the loss, we conduct preliminary studies on alternative representations of the characteristic polynomials. The parameters in these new models are extracted using the Levenberg–Marquardt algorithm to accurately estimate characteristic polynomials and the loss information.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2015
Creator: Sun, Shuo

Simulation and Performance Analysis of Strategic Air Traffic Management under Weather Uncertainty

Description: In this thesis, I introduce a promising framework for representing an air traffic flow (stream) and flow-management action operating under weather uncertainty. I propose to use a meshed queuing and Markov-chain model---specifically, a queuing model whose service-rates are modulated by an underlying Markov chain describing weather-impact evolution---to capture traffic management in an uncertain environment. Two techniques for characterizing flow-management performance using the model are developed, namely 1) a master-Markov-chain representation technique that yields accurate results but at relatively high computational cost, and 2) a jump-linear system-based approximation that has promising scalability. The model formulation and two analysis techniques are illustrated with numerous examples. Based on this initial study, I believe that the interfaced weather-impact and traffic-flow model analyzed here holds promise to inform strategic flow contingency management in NextGen.
Date: May 2011
Creator: Zhou, Yi

Automatic Extraction of Highlights from a Baseball Video Using HMM and MPEG-7 Descriptors

Description: In today’s fast paced world, as the number of stations of television programming offered is increasing rapidly, time accessible to watch them remains same or decreasing. Sports videos are typically lengthy and they appeal to a massive crowd. Though sports video is lengthy, most of the viewer’s desire to watch specific segments of the video which are fascinating, like a home-run in a baseball or goal in soccer i.e., users prefer to watch highlights to save time. When associated to the entire span of the video, these segments form only a minor share. Hence these videos need to be summarized for effective presentation and data management. This thesis explores the ability to extract highlights automatically using MPEG-7 features and hidden Markov model (HMM), so that viewing time can be reduced. Video is first segmented into scene shots, in which the detection of the shot is the fundamental task. After the video is segmented into shots, extraction of key frames allows a suitable representation of the whole shot. Feature extraction is crucial processing step in the classification, video indexing and retrieval system. Frame features such as color, motion, texture, edges are extracted from the key frames. A baseball highlight contains certain types of scene shots and these shots follow a particular transition pattern. The shots are classified as close-up, out-field, base and audience. I first try to identify the type of the shot using low level features extracted from the key frames of each shot. For the identification of the highlight I use the hidden Markov model using the transition pattern of the shots in time domain. Experimental results suggest that with reasonable accuracy highlights can be extracted from the video.
Date: May 2011
Creator: Saudagar, Abdullah Naseer Ahmed

A Bidirectional Two-Hop Relay Network Using GNU Radio and USRP

Description: A bidirectional two-hop relay network with decode-and-forward strategy is implemented using GNU Radio (software) and several USRPs (hardware) on Ubuntu (operating system). The relay communication system is comprised of three nodes; Base Station A, Base Station B, and Relay Station (the intermediate node). During the first time slot, Base Station A and Base Station B will each transmit data, e.g., a JPEG file, to Relay Station using DBPSK modulation and FDMA. For the final time slot, Relay Station will perform a bitwise XOR of the data, and transmit the XORed data to Base Station A and Base Station B, where the received data is decoded by performing another XOR operation with the original data.
Date: August 2011
Creator: Le, Johnny