UNT Libraries - 6 Matching Results

Search Results

Analysis and Performance of a Cyber-Human System and Protocols for Geographically Separated Collaborators

Description: This dissertation provides an innovative mechanism to collaborate two geographically separated people on a physical task and a novel method to measure Complexity Index (CI) and calculate Minimal Complexity Index (MCI) of a collaboration protocol. The protocol is represented as a structure, and the information content of it is measured in bits to understand the complex nature of the protocol. Using the complexity metrics, one can analyze the performance of a collaborative system and a collaboration protocol. Security and privacy of the consumers are vital while seeking remote help; this dissertation also provides a novel authorization framework for dynamic access control of resources on an input-constrained appliance used for completing the physical task. Using the innovative Collaborative Appliance for REmote-help (CARE) and with the support of a remotely located expert, fifty-nine subjects with minimal or no prior mechanical knowledge are able to elevate a car for replacing a tire in an average time of six minutes and 53 seconds and with an average protocol complexity of 171.6 bits. Moreover, thirty subjects with minimal or no prior plumbing knowledge are able to change the cartridge of a faucet in an average time of ten minutes and with an average protocol complexity of 250.6 bits. Our experiments and results show that one can use the developed mechanism and methods for expanding the protocols for a variety of home, vehicle, and appliance repairs and installations.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Jonnada, Srikanth

Content and Temporal Analysis of Communications to Predict Task Cohesion in Software Development Global Teams

Description: Virtual teams in industry are increasingly being used to develop software, create products, and accomplish tasks. However, analyzing those collaborations under same-time/different-place conditions is well-known to be difficult. In order to overcome some of these challenges, this research was concerned with the study of collaboration-based, content-based and temporal measures and their ability to predict cohesion within global software development projects. Messages were collected from three software development projects that involved students from two different countries. The similarities and quantities of these interactions were computed and analyzed at individual and group levels. Results of interaction-based metrics showed that the collaboration variables most related to Task Cohesion were Linguistic Style Matching and Information Exchange. The study also found that Information Exchange rate and Reply rate have a significant and positive correlation to Task Cohesion, a factor used to describe participants' engagement in the global software development process. This relation was also found at the Group level. All these results suggest that metrics based on rate can be very useful for predicting cohesion in virtual groups. Similarly, content features based on communication categories were used to improve the identification of Task Cohesion levels. This model showed mixed results, since only Work similarity and Social rate were found to be correlated with Task Cohesion. This result can be explained by how a group's cohesiveness is often associated with fairness and trust, and that these two factors are often achieved by increased social and work communications. Also, at a group-level, all models were found correlated to Task Cohesion, specifically, Similarity+Rate, which suggests that models that include social and work communication categories are also good predictors of team cohesiveness. Finally, temporal interaction similarity measures were calculated to assess their prediction capabilities in a global setting. Results showed a significant negative correlation between the Pacing Rate and ...
Date: May 2017
Creator: Castro Hernandez, Alberto

Evaluation of Call Mobility on Network Productivity in Long Term Evolution Advanced (LTE-A) Femtocells

Description: The demand for higher data rates for indoor and cell-edge users led to evolution of small cells. LTE femtocells, one of the small cell categories, are low-power low-cost mobile base stations, which are deployed within the coverage area of the traditional macro base station. The cross-tier and co-tier interferences occur only when the macrocell and femtocell share the same frequency channels. Open access (OSG), closed access (CSG), and hybrid access are the three existing access-control methods that decide users' connectivity to the femtocell access point (FAP). We define a network performance function, network productivity, to measure the traffic that is carried successfully. In this dissertation, we evaluate call mobility in LTE integrated network and determine optimized network productivity with variable call arrival rate in given LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells. In the second scenario, we evaluate call mobility in LTE integrated network with increasing femtocells and maximize network productivity with variable femtocells distribution per macrocell with constant call arrival rate in uniform LTE deployment with femtocell access modes (OSG, CSG, HYBRID) for a given call blocking vector. The solution to the optimization is maximum network productivity and call arrival rates for all cells for network deployment where peak productivity is identified. We analyze the effects of call mobility on network productivity by simulating low, high, and no mobility scenarios and study the impact based on offered load, handover traffic and blocking probabilities. Finally, we evaluate and optimize performance of fractional frequency reuse (FFR) mechanism and study the impact of proposed metric weighted user satisfaction with sectorized FFR configuration.
Date: December 2017
Creator: Sawant, Uttara

Location Estimation and Geo-Correlated Information Trends

Description: A tremendous amount of information is being shared every day on social media sites such as Facebook, Twitter or Google+. However, only a small portion of users provide their location information, which can be helpful in targeted advertising and many other services. Current methods in location estimation using social relationships consider social friendship as a simple binary relationship. However, social closeness between users and structure of friends have strong implications on geographic distances. In the first task, we introduce new measures to evaluate the social closeness between users and structure of friends. Then we propose models that use them for location estimation. Compared with the models which take the friend relation as a binary feature, social closeness can help identify which friend of a user is more important and friend structure can help to determine significance level of locations, thus improving the accuracy of the location estimation models. A confidence iteration method is further introduced to improve estimation accuracy and overcome the problem of scarce location information. We evaluate our methods on two different datasets, Twitter and Gowalla. The results show that our model can improve the estimation accuracy by 5% - 20% compared with state-of-the-art friend-based models. In the second task, we also propose a Local Event Discovery and Summarization (LEDS) framework to detect local events from Twitter. Many existing algorithms for event detection focus on larger-scale events and are not sensitive to smaller-scale local events. Most of the local events detected by these methods are major events like important sports, shows, or big natural disasters. In this work, we propose the LEDS framework to detect both bigger and smaller events. LEDS contains three key steps: 1) Detecting possible event related terms by monitoring abnormal distribution in different locations and times; 2) Clustering tweets based on their key terms, ...
Date: December 2017
Creator: Liu, Zhi

Online Construction of Android Application Test Suites

Description: Mobile applications play an important role in the dissemination of computing and information resources. They are often used in domains such as mobile banking, e-commerce, and health monitoring. Cost-effective testing techniques in these domains are critical. This dissertation contributes novel techniques for automatic construction of mobile application test suites. In particular, this work provides solutions that focus on the prohibitively large number of possible event sequences that must be sampled in GUI-based mobile applications. This work makes three major contributions: (1) an automated GUI testing tool, Autodroid, that implements a novel online approach to automatic construction of Android application test suites (2) probabilistic and combinatorial-based algorithms that systematically sample the input space of Android applications to generate test suites with GUI/context events and (3) empirical studies to evaluate the cost-effectiveness of our techniques on real-world Android applications. Our experiments show that our techniques achieve better code coverage and event coverage compared to random test generation. We demonstrate that our techniques are useful for automatic construction of Android application test suites in the absence of source code and preexisting abstract models of an Application Under Test (AUT). The insights derived from our empirical studies provide guidance to researchers and practitioners involved in the development of automated GUI testing tools for Android applications.
Date: December 2017
Creator: Adamo Jr., David T

Probabilistic Analysis of Contracting Ebola Virus Using Contextual Intelligence

Description: The outbreak of the Ebola virus was declared a Public Health Emergency of International Concern by the World Health Organisation (WHO). Due to the complex nature of the outbreak, the Centers for Disease Control and Prevention (CDC) had created interim guidance for monitoring people potentially exposed to Ebola and for evaluating their intended travel and restricting the movements of carriers when needed. Tools to evaluate the risk of individuals and groups of individuals contracting the disease could mitigate the growing anxiety and fear. The goal is to understand and analyze the nature of risk an individual would face when he/she comes in contact with a carrier. This thesis presents a tool that makes use of contextual data intelligence to predict the risk factor of individuals who come in contact with the carrier.
Date: May 2017
Creator: Gopala Krishnan, Arjun