UNT Libraries - 6 Matching Results

Search Results

Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

Description: In order to run and manage resource-intensive high-performance applications, large-scale computing and storage platforms have been evolving rapidly in various domains in both academia and industry. The energy expenditure consumed to operate and maintain these cloud computing infrastructures is a major factor to influence the overall profit and efficiency for most cloud service providers. Moreover, considering the mitigation of environmental damage from excessive carbon dioxide emission, the amount of power consumed by enterprise-scale data centers should be constrained for protection of the environment.Generally speaking, there exists a trade-off between power consumption and application performance in large-scale computing systems and how to balance these two factors has become an important topic for researchers and engineers in cloud and HPC communities. Therefore, minimizing the power usage while satisfying the Service Level Agreements have become one of the most desirable objectives in cloud computing research and implementation. Since the fundamental feature of the cloud computing platform is hosting workloads with a variety of characteristics in a consolidated and on-demand manner, it is demanding to explore the inherent relationship between power usage and machine configurations. Subsequently, with an understanding of these inherent relationships, researchers are able to develop effective power management policies to optimize productivity by balancing power usage and system performance. In this dissertation, we develop an autonomic power-aware system management framework for large-scale computer systems. We propose a series of techniques including coarse-grain power profiling, VM power modelling, power-aware resource auto-configuration and full-system power usage simulator. These techniques help us to understand the characteristics of power consumption of various system components. Based on these techniques, we are able to test various job scheduling strategies and develop resource management approaches to enhance the systems' power efficiency.
Date: August 2015
Creator: Zhang, Ziming

Advanced Power Amplifiers Design for Modern Wireless Communication

Description: Modern wireless communication systems use spectrally efficient modulation schemes to reach high data rate transmission. These schemes are generally involved with signals with high peak-to-average power ratio (PAPR). Moreover, the development of next generation wireless communication systems requires the power amplifiers to operate over a wide frequency band or multiple frequency bands to support different applications. These wide-band and multi-band solutions will lead to reductions in both the size and cost of the whole system. This dissertation presents several advanced power amplifier solutions to provide wide-band and multi-band operations with efficiency improvement at power back-offs.
Date: August 2015
Creator: Shao, Jin

Predictive Modeling for Persuasive Ambient Technology

Description: Computer scientists are increasingly aware of the power of ubiquitous computing systems that can display information in and about the user's environment. One sub category of ubiquitous computing is persuasive ambient information systems that involve an informative display transitioning between the periphery and center of attention. The goal of this ambient technology is to produce a behavior change, implying that a display must be informative, unobtrusive, and persuasive. While a significant body of research exists on ambient technology, previous research has not fully explored the different measures to identify behavior change, evaluation techniques for linking design characteristics to visual effectiveness, nor the use of short-term goals to affect long-term behavior change. This study uses the unique context of noise-induced hearing loss (NIHL) among collegiate musicians to explore these issues through developing the MIHL Reduction Feedback System that collects real-time data, translates it into visuals for music classrooms, provides predictive outcomes for goalsetting persuasion, and provides statistical measures of behavior change.
Date: August 2015
Creator: Powell, Jason W.

The Procedural Generation of Interesting Sokoban Levels

Description: As video games continue to become larger, more complex, and more costly to produce, research into methods to make game creation easier and faster becomes more valuable. One such research topic is procedural generation, which allows the computer to assist in the creation of content. This dissertation presents a new algorithm for the generation of Sokoban levels. Sokoban is a grid-based transport puzzle which is computational interesting due to being PSPACE-complete. Beyond just generating levels, the question of whether or not the levels created by this algorithm are interesting to human players is explored. A study was carried out comparing player attention while playing hand made levels versus their attention during procedurally generated levels. An auditory Stroop test was used to measure attention without disrupting play.
Date: May 2015
Creator: Taylor, Joshua

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Arigong, Bayaner

Trajectory Analytics

Description: The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the ground-truth set obtained using the crowdsourcing technique. The results show that the relationships between a pair of trajectories can signify the low-level multi-agent activities.
Date: May 2015
Creator: Santiteerakul, Wasana