UNT Libraries - Browse


Identifying genetic interactions of the spindle checkpoint in Caenorhabditis elegans.

Description: Faithful segregation of chromosomes is ensured by the spindle checkpoint. If a kinetochore does not correctly attach to a microtubule the spindle checkpoint stops cell cycle progression until all chromosomes are attached to microtubules or tension is experienced while pulling the chromosomes. The C. elegans gene, san-1, is required for spindle checkpoint function and anoxia survival. To further understand the role of san-1 in the spindle checkpoint, an RNAi screen was conducted to identify genetic interactions with san-1. The kinetochore gene hcp-1 identified in this screen, was known to have a genetic interaction with hcp-2. Interestingly, san-1(ok1580);hcp-2(ok1757) had embryonic and larval lethal phenotypes, but the phenotypes observed are less severe compared to the phenotypes of san-1(ok1580);hcp-1(RNAi) animals. Both san-1(ok1580);hcp-1(RNAi) and san-1(ok1580);hcp-2(RNAi) produce eggs that may hatch; but san-1(ok1580):hcp-1(RNAi) larvae do not survive to adulthood due to defects caused by aberrant chromosome segregations during development. Y54G9A.6 encodes the C. elegans homolog of bub-3, and has spindle checkpoint function. In C.elegans, bub-3 has genetic interactions with san-1 and mdf-2. An RNAi screen for genetic interactions with bub-3 identified that F31F6.3 may potentially have a genetic interaction with bub-3. This work provided genetic evidence that hcp-1, hcp-2 and F31F6.2 interact with spindle checkpoint genes.
Date: May 2009
Creator: Stewart, Neil

Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings

Description: N-Acylethanolamines (NAEs) are endogenous plant lipids hydrolyzed by fatty acid amide hydrolase (FAAH). When wildtype Arabidopsis thaliana seeds were germinated and grown in exogenous NAE 12:0 (35 µM and above), growth was severely reduced in a concentration dependent manner. Wildtype A. thaliana seeds sown on exogenous abscisic acid (ABA) exhibited similar growth reduction to that seen with NAE treatment. AtFAAH knockouts grew and developed similarly to WT, but AtFAAH overexpressor lines show markedly enhanced sensitivity to ABA. When low levels of NAE and ABA, which have very little effect on growth alone, were combined, there was a dramatic reduction in seedling growth in all three genotypes, indicating a synergistic interaction between ABA and NAE. Notably, this synergistic arrest of seedling growth was partially reversed in the ABA insensitive (abi) mutant abi3-1, indicating that a functional ABA signaling pathway is required for the full synergistic effect. This synergistic growth arrest results in an increased accumulation of NAEs, but no concomitant increase in ABA levels. The combined NAE and ABA treatment induced a dose-dependent increase in ABI3 transcript levels, which was inversely related to growth. The ABA responsive genes AtHVA22B and RD29B also had increased expression in both NAE and ABA treatment. The abi3-1 mutant showed no expression of ABI3 and AtHVA22B, but RD29B expression remained similar to wildtype seedlings, suggesting an alternate mechanism for NAE and ABA interaction. Taken together, these data suggest that NAE metabolism acts through ABI3-dependent and independent pathways in the negative regulation of seedling development.
Date: August 2010
Creator: Cotter, Matthew Q.

Luminescence Resonance Energy Transfer-Based Modeling of Troponin in the Presence of Myosin and Troponin/Tropomyosin Defining Myosin Binding Target Zones in the Reconstituted Thin Filament

Description: Mechanistic details on the regulation of striated muscle contraction still need to be determined, particularly the specific structural locations of the elements comprising the thick and thin filaments. Of special interest is the location of the regulatory component, troponin, on the actin filament and how its presence influences the behavior of myosin binding to the thin filament. In the present study: (1) Luminescence resonance energy transfer was used to monitor potential conformational changes in the reconstituted thin filament between the C-terminal region of troponin T and myosin subfragment 1; (2) Location of troponin in previously derived atomic models of the acto-myosin complex was mapped to visualize specific contacts; and (3) Shortened tropomyosin was engineered and protein binding and ATPase assays were performed to study the effect of myosin binding close to the troponin complex. Analysis of the results suggest the following: (1) Irrespective of calcium levels, the C-terminal region of troponin T is located close to myosin loop 3 and a few actin helices that may perturb strong acto-myosin interactions responsible for force production. (2) Atomic models indicate myosin subfragment 1 cannot attain the post- powerstroke state due to the full motion of the lever arm being sterically hindered by troponin. (3) A shortened tropomyosin with five actin binding modules (instead of the native seven in muscle cells) binds actin contiguously in a head-to-tail manner and serves to increase the periodicity of troponin complexes on the actin filament. Such behavior eliminates the structure of the actin filament being responsible for the binding location of tropomyosin. (4) Differential behavior of myosin subfragment 1 i.e. (a) binding adjacent to troponin and (b) binding further away from troponin, is apparent as tropomyosin and troponin appear to govern the regions or "target zones" where myosin can bind productively along the actin filament. Physiologically, myosins ...
Date: May 2009
Creator: Patel, Dipesh A.

Manipulating Sucrose Proton Symporters to Understand Phloem Loading

Description: Phloem vascular tissues transport sugars synthesized by photosynthesis in mature leaves by a process called phloem loading in source tissues and unloading in sink tissues. Phloem loading in source leaves is catalyzed by Suc/H+ symporters (SUTs) which are energized by proton motive force. In Arabidopsis the principal and perhaps exclusive SUT catalyzing phloem loading is AtSUC2. In mutant plants harboring a T-DNA insertion in each of the functional SUT-family members, only Atsuc2 mutants demonstrate overtly debilitated phloem transport. Analysis of a mutant allele (Atsuc2-4) of AtSUC2 with a T-DNA insertion in the second intron showed severely stunted phenotype similar to previously analyzed Atsuc2 null alleles. However unlike previous alleles Atsuc2-4 produced viable seeds. Analysis of phloem specific promoters showed that promoter expression was regulated by Suc concentration. Unlike AtSUC2p, heterologous promoter CoYMVp was not repressed under high Suc conc. Further analysis was conducted using CoYMVp to test the capacity of diverse clades in SUT-gene family for transferring Suc in planta in Atsuc2 - / - mutant background. AtSUC1 and ZmSUT1 from maize complemented Atsuc2 mutant plants to the highest level compared to all other transporters. Over-expression of the above SUTs in phloem showed enhanced Suc loading and transport, but against expectations, plants were stunted. The implications of SUT over-expression to enhance phloem transport and loading are discussed and how it induces a perception of phosphate imbalance is presented.
Date: August 2013
Creator: Dasgupta, Kasturi

Manipulations of Sucrose/Proton Symporters and Proton-pumping Pyrophosphatase Lead to Enhanced Phloem Transport But Have Contrasting Effects on Plant Biomass

Description: Delivery of photoassimilate, mainly sucrose (Suc) from photoautotrophic source leaves provides the substrate for the growth and maintenance of sink tissues such as roots, storage tissues, flowers and fruits, juvenile organs, and seeds. Phloem loading is the energized process of accumulating solute in the sieve element/companion cell complex of source leaf phloem to generate the hydrostatic pressure that drives long-distance transport. In many plants this is catalyzed by Suc/Proton (H+) symporters (SUTs) which are energized by the proton motive force (PMF). Overexpression of SUTs was tested as means to enhance phloem transport and plant productivity. Phloem specific overexpression of AtSUC2 in wild type (WT) tobacco resulted in enhanced Suc loading and transport, but against the hypothesis, plants were stunted and accumulated carbohydrates in the leaves, possibly due to lack of sufficient energy to support enhanced phloem transport. The energy for SUT mediated phloem loading is provided from the PMF, which is ultimately supplied by the oxidation of a small proportion of the loaded photoassimilates. It was previously shown that inorganic pyrophosphate (PPi) is necessary for this oxidation and overexpressing a proton-pumping pyrophosphatase (AVP1) enhanced both shoot and root growth, and augmented several energized processes like nutrient acquisition and stress responses. We propose that AVP1 localizes to the PM of phloem cells and uses PMF to synthesize PPi rather than hydrolyze it, and in doing so, maintains PPi levels for efficient Suc oxidation and ATP production. Enhanced ATP production in turn strengthens the PMF via plasma membrane (PM) ATPase, increasing phloem energization and phloem transport. Phloem-specific and constitutive AVP1 overexpressing lines showed increased growth and more efficiently moved carbohydrates to sink organs compared to WT. This suggested changes in metabolic flux but diagnostic metabolites of central metabolism did not show changes in steady state levels. This research focuses on fundamental aspects ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Khadilkar, Aswad S

Metabolic Engineering of Raffinose-Family Oligosaccharides in the Phloem Reveals Alterations in Patterns of Carbon Partitioning and Enhances Resistance to Green Peach Aphid

Description: Phloem transport is along hydrostatic pressure gradients generated by differences in solute concentration between source and sink tissues. Numerous species accumulate raffinose-family oligosaccharides (RFOs) in the phloem of mature leaves to accentuate the pressure gradient between source and sinks. In this study, metabolic engineering was used to generate RFOs at the inception of the translocation stream of Arabidopsis thaliana, which transports predominantly sucrose. To do this, three genes, GALACTINOL SYNTHASE, RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, were expressed from promoters specific to the companion cells of minor veins. Two transgenic lines homozygous for all three genes (GRS63 and GRS47) were selected for further analysis. Sugars were extracted and quantified by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and 21-day old plants of both lines had levels of galactinol, raffinose, and stachyose approaching 50% of total soluble sugar. All three exotic sugars were also identified in phloem exudates from excised leaves of transgenic plants whereas levels were negligible in exudates from wild type leaves. Differences in starch accumulation or degradation between wild type and GRS63 and GRS47 lines were not observed. Similarly, there were no differences in vegetative growth between wild type and engineered plants, but engineered plants flowered earlier. Finally, since the sugar composition of the phloem translocation stream is altered in these plants, we tested for aphid feeding. When green peach aphids were given a choice between WT and transgenic plants, WT plants were preferred. When aphids were reared on only WT or only transgenic plants, aphid fecundity was reduced on the transgenic plants. When aphids were fed on artificial media with and without RFOs, aphid reproduction did not show differences, suggesting the aphid resistance is not a direct effect of the exotic sugars.
Date: August 2010
Creator: Cao, Te

Molecular and biochemical characterization of phospholipase D in cotton (Gossypium hirsutum L) seedlings.

Description: N-Acylethanolamines (NAEs) are enriched in seed-derived tissues and are believed to be formed from the membrane phospholipid, N-acylphosphatidylethanolamine (NAPE) via the action of phospholipase D (PLD). In an effort to identify a functional NAPE-PLD in cotton seeds and seedlings, we have screened a cotton seedling cDNA (cotyledon mRNA from 48 h dark grown seedlings) library with a 1.2 kb tobacco partial cDNA fragment encoding the middle third of a putative PLDβ/γ (genbank accession, AF195614) isoform. Six plaques were isolated from the Uni-ZAP lambda library, excised as pBluescript SK(-) phagemids and subjected to nucleotide sequence analysis. Alignment of derived sequences with Arabidopsis PLD family members indicated that the cDNAs represent six different PLD gene products -three putative PLD β isoforms and three putative PLD δ isoforms. The PLD β isoforms, designated Ghpldβ1a, GHpldβ1b and a truncated Ghpldβ1b isoform. Both the full-length PLD β proteins contained characteristic HKxxxxD catalytic domains, a PC-binding domain, a PIP2-binding domain and a C2 domain. In addition both cotton PLD β isoforms had a N-terminal "SPQY" rich domain which appeared to be unique to these PLDs. The three PLD δ isoforms, designated Ghpldδ1a, Ghpldδ1b and Ghpldδ1b-2 encode full-length PLDδ proteins, and like the above PLDs, contained the characteristic catalytic and regulatory domains. The expression of Ghpldδ1b showed hydrolytic and transphosphatidylation activity toward radiolabelled phosphatidylcholine (PC) but it appears Ghpldδ1b does not utilize NAPE as a substrate to produce NAEs nor does it seem to be suppressed by NAEs.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2005
Creator: McHugh, John

Molecular and Functional Characterization of Medicago Truncatula Npf17 Gene

Description: Legumes are unique among plants for their ability to fix atmospheric nitrogen with the help of soil bacteria rhizobia. Medicago truncatula is used as a model legume to study different aspects of symbiotic nitrogen fixation. M. truncatula, in association with its symbiotic partner Sinorhizobium meliloti, fix atmospheric nitrogen into ammonia, which the plant uses for amino acid biosynthesis and the bacteria get reduced photosynthate in return. M. truncatula NPF1.7 previously called MtNIP/LATD is required for symbiotic nitrogen fixing root nodule development and for normal root architecture. Mutations in MtNPF1.7 have defects in these processes. MtNPF1.7 encodes a member of the NPF family of transporters. Experimental results showing that MtNPF1.7 functioning as a high-affinity nitrate transporter are its expression restoring chlorate susceptibility to the Arabidopsis chl1-5 mutant and high nitrate transport in Xenopus laevis oocyte system. However, the weakest Mtnip-3 mutant allele also displays high-affinity nitrate transport in X. laevis oocytes and chlorate susceptibility to the Atchl1-5 mutant, suggesting that MtNPF1.7 might have another biochemical function. Experimental evidence shows that MtNPF1.7 also functions in hormone signaling. Constitutive expression of MtNPF1.7 in several species including M. truncatula results in plants with a robust growth phenotype. Using a synthetic auxin reporter, the presence of higher auxin in both the Mtnip-1 mutant and in M. truncatula plants constitutively expressing MtNPF1.7 was observed. Previous experiments showed MtNPF1.7 expression is hormone regulated and the MtNPF1.7 promoter is active in root and nodule meristems and in the vasculature. Two potential binding sites for an auxin response factors (ARFs) were found in the MtNPF1.7 promoter. Chromatin immunoprecipitation-qRT-PCR confirmed MtARF1 binding these sites. Mutating the MtARF1 binding sites increases MtNPF1.7 expression, suggesting a mechanism for auxin repression of MtNPF1.7. Consistent with these results, constitutive expression of an ARF in wild-type plants partially phenocopies Mtnip-1 mutants’ phenotypes.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2013
Creator: Salehin, Mohammad

Noncovalent Crosslinking of SH1 and SH2 to Detect Dynamic Flexibility of the SH1 Helix

Description: In this experiment, fluorescent N- (1-pyrenyl) iodoacetamide modified the two reactive thiols, SH1 (Cys 707) and SH2 (Cys 697) on myosin to detect SH1-SH2 a -helix melting. The excimer forming property of pyrene is well suited to monitor the dynamics of the SH1 and SH2 helix melting, since the excimer should only form during the melted state. Decreased anisotropy of the excimer relative to the monomeric pyrene fluorescence is consistent with the disordering of the melted SH1-SH2 region in the atomic model. Furthermore, nucleotide analogs induced changes in the anisotropy of the excimer, suggesting that the nucleotide site modulates the flexibility of SH1-SH2 region.
Date: August 2000
Creator: Park, Hyunguk

NSAID effect on prostanoids in fishes: Prostaglandin E2 levels in bluntnose minnows (Pimephales notatus) exposed to ibuprofen.

Description: Prostanoids are oxygenated derivatives of arachidonic acid with a wide range of physiological effects in vertebrates including modulation of inflammation and innate immune responses. Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibition of cyclooxygenase (COX) conversion of arachidonic acid to prostanoids. In order to better understand the potential of environmental NSAIDS for interruption of normal levels COX products in fishes, we developed an LC/MS/MS-based approach for tissue analysis of 7 prostanoids. Initial studies examining muscle, gut and gill demonstrated that prostaglandin E2 (PGE2) was the most abundant of the measured prostanoids in all tissues and that gill tissue had the highest and most consistent concentrations of PGE2. After short-term 48-h laboratory exposures to concentrations of 5, 25, 50 and 100 ppb ibuprofen, 50.0ppb and 100.0 ppb exposure concentrations resulted in significant reduction of gill tissue PGE2 concentration by approximately 30% and 80% respectively. The lower exposures did not result in significant reductions when compared to unexposed controls. Measured tissue concentrations of ibuprofen indicated that this NSAID had little potential for bioaccumulation (BCF 1.3) and the IC50 of ibuprofen for inhibition of PGE2 production in gill tissue was calculated to be 0.4 µM. Short-term laboratory exposure to ibuprofen did not result in significant alteration of concentrations of PGE2 at environmentally relevant concentrations.
Date: August 2009
Creator: Bhandari, Khageshor

Nucleotide Inhibition of Glyoxalase II

Description: The glyoxalase system mediates the conversion of methylglyoxal, a toxic ketoaldehyde, to D-lactic acid. The system is composed of two enzymes, glyoxalase I (Glo-I) and glyoxalase II (Glo-II), and exhibits an absolute requirement for a catalytic quantity of glutathione (GSH). Glo-I catalyzes the isomerization of a hemithioacetal, formed non-enzymatically from methylglyoxal and GSH, to the corresponding a -D-hydroxyacid thioester, s-D-lactoylglutathione (SLG). Glo-II catalyzes the irreversible breakdown of SLG to D-lactate and GSH. We have observed that ATP or GTP significantly inhibits the Glo-II activity of tissue homogenates from various sources. We have developed a rapid, one step chromatography procedure to purify Glo-II such that the purified enzyme remains "sensitive" to inhibition by ATP or GTP (Glo-II-s). Studies indicate that inhibition of Glo-II-s by nucleotides is restricted to ATP, GTP, ADP, and GDP, with ATP appearing most effective. Kinetics studies have shown that ATP acts as a partial non-competitive inhibitor of Glo-II-s activity, and further suggest that two kinetically distinguishable forms of the enzyme exist. The sensitivity of pure Glo-II-s to nucleotide inhibition is slowly lost on storage even at -80° C. This loss is accelerated at higher temperatures or in the presence of ATP. Kinetics studies on the resultant "insensitive" enzyme (Glo-II-i) show that a significant reduction of the affinity of the enzyme for the substrate, SLG, occurs and further suggest that only one form of the enzyme is kinetically distinguishable after "de-sensitization". Tryptophan fluorescence studies of the two enzyme preparations suggest that a subtle conformational change in the enzyme has occurred during de-sensitization. We have also observed that Glo-II-i is "resensitized" to nucleotide inhibition after incubation in the presence of a reagent that reduces disulfide bonds. The resensitized enzyme exhibits an increased KM value similar to that of the original Glo-II-s. Kinetics studies show that ATP or GTP again ...
Date: May 1999
Creator: Gillis, Glen S

Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content

Description: The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton resulted in elevated levels of palmitic acid in transgenic somatic embryos compared to control embryos. Expression of the anti-sense FatB cDNA in transgenic cotton plants produced some plants with a dwarf phenotype. These plants had significantly smaller mature leaves, all with smaller cells, suggesting that these plants may have less palmitic acid available for incorporation into extraplastidial membrane lipids during cell expansion. Thus manipulation of FatB expression in cotton directly influenced palmitic acid levels. Collectively, data presented in this dissertation support the hypothesis that there indeed is a palmitoyl-ACP thioesterase in cotton, encoded by the isolated FatB cDNA, which plays ...
Date: August 2001
Creator: Huynh, Tu T

Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Description: Recently, plastidial carbonic anhydrase (CA, EC cDNA clones encoding functional CA enzymes were isolated from a nonphotosynthetic cotton tissue. The role of CA in photosynthetic tissues have been well characterized, however there is almost no information for the role of CA in nonphotosynthetic tissues. A survey of relative CA transcript abundance and enzyme activity in different cotton organs revealed that there was substantial CA expression in cotyledons of seedlings and embryos, both nonphotosynthetic tissues. To gain insight into the role(s) of CA, I examined CA expression in cotyledons of seedlings during post-germinative growth at different environmental conditions. CA expression in cotyledons of seedlings increased from 18 h to 72 h after germination in the dark. Seedlings exposed to light had about a 2-fold increase in CA activities when compared with seedlings kept in the dark, whereas relative CA transcript levels were essentially the same. Manipulation of external CO2 environments [zero, ambient (350 ppm), or high (1000 ppm)] modulated coordinately the relative transcript abundance of CA (and rbcS) in cotyledons, but did not affect enzyme activities. On the other hand, regardless of the external CO2 conditions seedlings exposed to light exhibited increase CA activity, concomitant with Rubisco activity and increased chlorophyll content. Our data revealed that steady-state levels of CA and rbcS transcripts are regulated at the transcriptional level in response to external CO2 conditions, while CA and Rubisco activities are modulated at the post-transcriptional level by light. Thus CA expression in cotyledons during post-germinative growth may be to “prime” cotyledons for the transition at the subcellular level for the transition from plastids to chloroplasts, where it provides CO2 for Rubisco during photosynthesis. Furthermore, CA expression increased during embryo maturation similar to oil accumulation. Specific sulfonamide inhibitors of CA activity significantly reduced the rate of [14C]-acetate incorporation into total lipids ...
Date: August 2001
Creator: Hoang, Chau V.

Proteomic Responses in the Gill of Zebrafish Following Exposure to Ibuprofen and Naproxen

Description: Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most abundant environmental pharmaceutical contaminants. In this study, a proteomic analysis was conducted to identify proteins differentially expressed in gill tissue of zebrafish (Danio rerio) after a 14-day exposure to the NSAIDs ibuprofen or naproxen. A total of 104 proteins with altered expression as indicated by 2-dimensional electrophoresis were analyzed by liquid chromatography with ion trap mass spectrometry (MS/MS). A total of 14 proteins fulfilled our requirements for identification which included consistency among replicate gels as well as successful MS/MS ion searches with the MASCOT database. The most prominent feature of the differential protein expression observed after NSAID exposure was an up-regulation of proteins belonging to the globin family which are involved in the transport of oxygen from gills and availability of heme molecules required for synthesis of cyclooxygenase. Differential expression was observed at exposure concentrations as low as 1-10 µg/L indicating that altered gene expression may occur in fish subjected to environmentally realistic levels of NSAID exposure.
Date: August 2012
Creator: Adhikari, Prem R.

Regulation of an S6/H4 Kinase in Crude Lymphosarcoma P1798 Preparations

Description: Purified S6/H4 kinase (Mr 60,000) requires autophosphorylation for activation. A rabbit anti-S6/H4 kinase peptide (SVIDPVPAPVGDSHVDGAAK) antibody recognized both the S6/H4 kinase holoenzyme and catalytic domain. Immunoreactivity with p60 kinase protein, and S6/H4 kinase activity were precisely correlated in fractions obtained from ion exchange chromatography of P1798 lymphosarcoma extracts. An enzyme which catalyzed the MgATP-dependent phosphorylation and activation of S6/H4 kinase coeluted with immunoreactivity from Mono 5, but not Mono Q chromatography. Since S6/H4 kinase is homologous with rac-activated PAK65, the observation that phosphorylation is also required for activation suggests a complex mechanism for in vivo activation of the S6/H4 kinase.
Date: December 1998
Creator: Taylor, Allison Antoinette

The Relationship of Force on Myosin Subfragment 2 Region to the Coiled-Coiled Region of the Myosin Dimer

Description: The stability of myosin subfragment 2 was analyzed using gravitational force spectroscopy. The region was found to destabilize under physiological force loads, indicating the possibility that subfragment 2 may uncoil to facilitate actin binding during muscle contraction. As a control, synthetic cofilaments were produced to discover if the observations in the single molecule assay were due to the lack of the stability provided by the thick filament. Statistically, there was no difference between the single molecule assay data and the synthetic cofilament assay data. Thus, the instability of the region is due to intrinsic properties within subfragment 2.
Date: December 2011
Creator: Hall, Nakiuda M.

Stretching the Flexible Myosin II Subfragment Using the Novel Gravitational Force Spectroscope, and the Uncoiling of S2

Description: Familial Hypertrophic cardiomyopathy (HCM) causes ventricle walls to thicken and often leads to sudden death especially in adults. Mutations in the subfragment 2 (S2) of β-cardiac myosin are implicated in the genetic disorder. This S2 region is a coiled-coil rod region resulting from the dimeric form of myosin II. It has been proposed that an elastic quality allows normal S2 to absorb force during the powerstroke according to the sliding filament model. To test the flexibility of single molecules of S2 against levels of physiological force, the Gravitational Force Spectrometer (GFS) is being developed. This novel system employs a standard microscope on an equatorial mount that allows the spectrometer to be rotated freely in space. Stationary glass beads are attached to a microscope slide where the molecule is tethered between the stationary bead and a smaller mobile bead. The GFS is oriented so that the force of gravity can act on the mobile bead and so impart a small force to the tethered subfragment. Additionally, a video system in conjunction with ImageJ software makes a distance measurement of the molecule possible with a resolution of around 11 nm. The S2 can be stretched parallel or perpendicular to the coiled coil to elucidate different structural properties of the rod. This study is the first to show structural evidence that S2 in vertebrate skeletal myosin uncoils proportionally to physiological force loads. Because of this, the usefulness and promise of the novel GFS is highlighted, and the biological role of S2's flexibility can be directly commented on. If the dimer undergoes uncoiling at physiological force loads as shown, then it is reasonable to think that this might occur in nature in response to the stress of the powerstroke on a single molecule. This unwinding could be to absorb force as a mechanism to ...
Date: May 2010
Creator: Dunn, James W.

The structure and function of troponin T upon metal ion binding and the detection of nucleic acid sequence variations.

Description: Numerous troponin T (TnT) isoforms are generated by alternative RNA splicing primarily in its NH2-terminal hypervariable region, but the functions of these isoforms are not completely understood. In this dissertation work, calcium and terbium binding behavior of several forms of TnT were investigated by spectroscopic and radioactive techniques. Chicken breast muscle TnT binds calcium and terbium through its NH2-terminal Tx motif (HEEAH)n with high affinity (10-6 mM) and fast on-rate (106 - 107 M-1 s-1). Chicken leg muscle TnT and a human cardiac TnT NH2-terminal fragment, which both lack the Tx motif on their NH2-terminal regions, do not have affinities for calcium in the physiological range. Computational predictions on TnT N47 suggest that the TnT NH2-terminal region might fold into an elongated structure with at least one high affinity metal ion binding pocket comprised primarily of the Tx motif sequence and several lower affinity binding sites. In addition, calcium binding to TnT N47 might alter its conformation and flexibility. Luminescence resonance energy transfer measurements and other experimental observations are consistent with the computational predictions suggesting the computational simulated atomic model is reasonable. TnT mutations are responsible for 15% of familiar hypertrophic cardiomyopathy (FHC) cases with a phenotype of relatively mild hypertrophy, but a high incidence of sudden death. Detection of those genetic mutations would facilitate the clinical diagnosis and initiation of treatment at an early stage. This dissertation also investigated a novel hybridization proximity assay (HYPA) combining molecular beacon and luminescence resonance energy transfer (LRET) technologies. Experimental results suggest that a shared stem probe design produces a more consistent response upon hybridization, whereas the internally labeled probe was less consistent, but can yield the highest responses. Using the optimally designed molecular probes, the HYPA provides a detection of alterations in nucleic acid structure of as little as a single nucleotide. ...
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2005
Creator: Zhang, Zhiling

Studies on actomyosin crossbridge flexibility using a new single molecule assay.

Description: Several key flexure sites exist in the muscle crossbridge including the actomyosin binding site which play important roles in the actomyosin crossbridge cycle. To distinguish between these sources of flexibility, a new single molecule assay was developed to observe the swiveling of rod about a single myosin. Myosins attached through a single crossbridge displayed mostly similar torsional characteristics compared to myosins attached through two crossbridges, which indicates that most of the torsional flexibility resides in the myosin subfragment-2, and thus the hinge between subfragment-2 and light meromyosin should contribute the most to this flexibility. The comparison of torsional characteristics in the absence and presence of ADP demonstrated a small but significant increase in twist rates for the double-headed myosins but no increase for single-headed myosins, which indicates that the ADP-induced increase in flexibility arises due to changes in the myosin head and verifies that most flexibility resides in myosin subfragment-2.
Date: May 2004
Creator: Gundapaneni, Deepika

Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization

Description: Transgenic tobacco plants were developed containing a partial PLD clone in antisense orientation. The PLD isoform targeted by the insertion was identified. A PLD clone was isolated from a cDNA library using the partial PLD as a probe: Nt10B1 shares 92% identity with PLDβ1 from tomato but lacks the C2 domain. PCR analysis confirmed insertion of the antisense fragment into the plants: three introns distinguished the endogenous gene from the transgene. PLD activity was assayed in leaf homogenates in PLDβ/g conditions. When phosphatidylcholine was utilized as a substrate, no significant difference in transphosphatidylation activity was observed. However, there was a reduction in NAPE hydrolysis in extracts of two transgenic plants. In one of these, a reduction in elicitor- induced PAL expression was also observed.
Date: December 2002
Creator: Hodson, Jane E.

Use of luminescence energy transfer probes to detect genetic variants.

Description: The purpose of this research was to study the hybridization of molecular beacons under different conditions and designs. Data collected suggest that the inconsistency found in the emission intensity of several of these probes may be caused by 3 important factors: length of the probe, nucleotide sequence and, the formation of an alternative complex structure such as a dimer. Of all three factors, dimer formation is the most troublesome, since it reduces the emission of the reporter molecules. A new probe design was used to reduce dimer formation. The emission signal of the improved probe was several folds stronger than those probes with the early design. In this research, dimer formation is detected, furthermore a new probe with a different design was tested. If dimer formation can be reduced molecular beacons can be integrated into more complex hybridization systems providing an important tool in research and diagnosis of genetic disorders.
Date: August 2004
Creator: Vaccaro, Carlos