UNT Libraries - Browse

ABOUT BROWSE FEED

DNA Degradation as an Indicator of Post-Mortem Interval

Description: The question of post-mortem interval (PMI) or time since death is often the most sought after piece of information associated with a medical death investigation. Based on the observation that DNA degradation disproportionately affects the analysis of larger genetic loci, it was proposed that DNA degradation, as a result of autolysis or putrefaction, could prove suitable as a potential rate-of-change indicator of PMI. Nine randomly amplified polymorphic DNA (RAPD) analysis primers and three sets of directed amplification primers were evaluated to determine their suitability for use in assessing the degree of DNA fragmentation in tissue samples. They were assessed for amplicon specificity, total DNA target sensitivity, allele monomorphism and the observance of degradation-based profile changes. Markers meeting the requisite criteria were then used to assess a range samples degraded under controlled and uncontrolled conditions. Tissue samples collected from seven domestic pigs (Sus scrofa) were incubated under controlled laboratory or uncontrolled field conditions to produce samples simulating those potentially collected in a forensic case. DNA samples isolated from these specimens were then analyzed at those loci which had been determined to meet the requisite criteria. Collectively, data generated from these analyses indicate that genetic profiles generated by this approach can provide information useful for estimating the post-mortem interval, with the locus and amplicons used being most useful during the first 72 hours after death.
Date: August 2010
Creator: Watson, William H.

Engineered Microbial Consortium for the Efficient Conversion of Biomass to Biofuels

Description: Current energy and environmental challenges are driving the use of cellulosic materials for biofuel production. A major obstacle in this pursuit is poor ethanol tolerance among cellulolytic Clostridium species. The first objective of this work was to establish a potential upper boundary of ethanol tolerance for the cellulosome itself. The hydrolytic function of crude cellulosome extracts from C. cellulolyticum on carboxymethyl cellulose (CMC) with 0, 5, 10, 15, 20 and 25% (v/v) ethanol was determined. Results indicated that the endoglucanase activity of the cellulosome incubated in 5% and 10% ethanol was significantly different from a control without ethanol addition. Furthermore a significant difference was observed in endoglucanase activity for cellulosome incubated in 5%, 10%, 15%, 20% and 25% ethanol in a standalone experiment. Endoglucanase activity continued to be observed for up to 25% ethanol, indicating that cellulosome function in ethanol will not be an impediment to future efforts towards engineering increasing production titers to levels at least as high as the current physiological limits of the most tolerant ethanologenic microbes. The second objective of this work was to study bioethanol production by a microbial co-culture involving Clostridium cellulolyticum and a recombinant Zymomonas mobilis engineered for the utilization of oligodextrans. The recombinant Z. mobilis ZM4 pAA1 and wild type ZM4 were first tested on RM medium (ATCC 1341) containing 2% cellobiose as the carbon source. Ethanol production from the recombinant Z. mobilis was three times that observed from the wild type Z. mobilis. Concomitant with ethanol production was the reduction in OD from 2.00 to 1.580, indicating the consumption of cellobiose. No such change in OD was observed from the wild type. The recombinant ZM4 was then co-cultured with C. cellulolyticum using cellobiose and microcrystalline cellulose respectively as carbon sources. Results indicate that the recombinant ZM4 acted synergistically with C. cellulolyticum ...
Date: August 2014
Creator: Anieto, Ugochukwu Obiakornobi

Genetic Analysis of Development and Behavior in Hypoxia and Cellular Characterization of Anoxia Induced Meiotic Prophase Arrest in Caenorhabditis Elegans

Description: It was hypothesized that chronic hypoxia will affect various biological processes including developmental trajectory and behavior. To test this hypothesis, embryos were raised to adulthood in severe hypoxic environments (0.5% O2 or 1% O2, 22°C) and analyzed for survival rate, developmental progression, and altered behaviors. Wildtype hermaphrodites survive chronic hypoxia yet developmental trajectory is slowed. The hermaphrodites raised in chronic hypoxia had different phenotypes in comparison to the normoxic controls. First, hermaphrodites exposed to chronic hypoxia produced a significantly lower number of embryos and had a slight increase in male progeny. This suggests that chronic hypoxia exposure during development affects the germline. Second, animals raised in chronic hypoxia from embryos to young adults have a slight increase in lifespan when re-exposed to a normoxic environment, indicating that chronic hypoxia does not negatively decrease lifespan. Finally, hermaphrodites that were raised in hypoxia will lay the majority of their eggs on the area of the agar plate where the bacterial lawn is not present. This is in contrast to animals in normoxia, which lay the majority of their eggs on the bacterial lawn. One hypothesis for this hypoxia-induced egg-laying behavior is that the animal can sense microenvironments in hypoxia. To examine if various pathways are involved with chronic-hypoxia responses RNAi and assayed genetic mutants were used. Specifically, genetic mutations affecting oxygen sensing (egl-9), aerotaxis (npr-1), TFG-ß signaling (dbl-1, daf-7) and predicted oxygen-binding proteins (globin-like genes) were phenotypically analyzed. Results indicate that mutations in several of these genes (npr-1, dbl-1) resulted in a decrease in hypoxia survival rate. A mutation in egl-9 also had a detrimental affect on the viability of an animal raised in chronic hypoxia. However, a similar phenotype was not observed in the vhl-1 mutation indicating that the phenotype may not be due to a mere increase in HIF-1 levels, ...
Date: August 2011
Creator: Little, Brent Ashley

Genetic and Environmental Factors that Mediate Survival of Prolonged Oxygen Deprivation in the Nematode Caenorhabditis Elegans

Description: Ischemic events of even a very short duration are not tolerated Ill in humans. The human cost of ischemia, when looked at as combined cardiovascular disease, dwarfs all other causes of death in the United States. Annually, CVD kills as many people in the US as does cancer, chronic lower respiratory disease, accidents, and diabetes mellitus combined. In 2005 (the latest year for which final statistics are available), CVD was responsible for 864,480 deaths or 35.3 percent of total deaths for the year. In my study, I have used the nematode Caenorhabditis elegans to determine genetic and environmental modulators of oxygen deprivation a key component of ischemia. I have found that animals with mutations in insulin like signaling pathways, neuronal function, electron transport chain components, germline function, and animals that are preconditioned by being raised on a diet of E. coli HT115 bacteria at 25°C have an enhanced ability to survive long-term (>72 hours) anoxia (<.005 kPa O2) at 20°C. The enhanced anoxia survival phenotype partially correlates with increased levels of carbohydrate stores in the nematodes. Suppression of this enhanced anoxia survival phenotype is possible by altering expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase, the FOXO transcription factor DAF-16, and 5’-AMP kinase.
Date: August 2010
Creator: LaRue, Bobby Lee, Jr.

Genetic Characterization of Central and South American Populations of Scarlet Macaw (Ara macao)

Description: The wild populations of the Scarlet Macaw subspecies native to southern Mexico and Central America, A. m. cyanoptera, have been drastically reduced over the last half century and are now a major concern to local governments and conservation groups. Programs to rebuild these local populations using captive bred specimens must be careful to reintroduce the native A. m. cyanoptera, as opposed to the South American nominate subspecies (A. m. macao) or hybrids of the two subspecies. Molecular markers for comparative genomic analyses are needed for definitive differentiation. Here I describe the isolation and sequence analysis of multiple loci from 7 pedigreed A. m. macao and 14 pedigreed A. m. cyanoptera specimens. The loci analyzed include the 18S rDNA genes, the complete mitogenome as well as intronic regions of selected autosomally-encoded genes. Although the multicopy18S gene sequences exhibited 10% polymorphism within all A. macao genomes, no differences were observed between any of the 21 birds whose genomes were studied. In contrast, numerous polymorphic sites were observed throughout the 16,993 bp mitochondrial genomes of both subspecies. Although much of the polymorphism was observed in the genomes of both subspecies, subspecies-specific alleles were observed at a number of mitochondrial loci, including 12S, 16S, CO2 and ND3. Evidence of possible subspecies-specific alleles were also found in three of four screened nuclear loci. Collectively, these mitochondrial and nuclear loci can be used as the basis to distinguish A. m. cyanoptera from the nominate subspecies, A. m. macao, as well as identify many hybrids, and most importantly will contribute to further reintroduction efforts.
Date: May 2016
Creator: Kim, Tracy

Investigation of Strategies for Improving STR Typing of Degraded and Low Copy DNA from Human Skeletal Remains and Bloodstains

Description: Forensic STR analysis is limited by the quality and quantity of DNA. Significant damage or alteration to the molecular structure of DNA by depurination, crosslinking, base modification, and strand breakage can impact typing success. Two methods that could potentially improve STR typing of challenged samples were explored: an in vitro DNA repair assay (PreCR™ Repair Mix) and whole genome amplification. Results with the repair assay showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally-damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR™ assay. The data suggest that the use of PreCR™ in casework should be considered with caution due to the assay’s varied results. As an alternative to repair, whole genome amplification (WGA) was pursued. The DOP-PCR method was selected for WGA because of initial primer design and greater efficacy for amplifying degraded samples. Several modifications of the original DOP-PCR primer were evaluated. These modifications allowed for an overall more robust amplification of damaged DNA from both contemporary and historical skeletal remains compared with that obtained by standard DNA typing and a previously described DOP-PCR method. These new DOP-PCR primers show promise for WGA of degraded DNA.
Date: August 2014
Creator: Ambers, Angie D.

Molecular Basis of Plant Defense Against Aphids: Role of the Arabidopsis Thaliana PAD4 and MPL1 Genes

Description: Myzus persicae (Sülzer), commonly known as green peach aphid (GPA), utilizes its slender stylet to penetrate the plant tissues intercellularly and consume copious amounts of photoassimilates present in the phloem sap causing extensive damage to host plants. The compatible interaction between GPA and Arabidopsis thaliana enabled us to characterize plant response to aphid infestation. Upon GPA infestation, Arabidopsis PAD4 (PHYTOALEXIN DEFICIENT4) gene modulates premature leaf senescence, which is involved in the programmed degradation of cellular components and the export of nutrients out of the senescing leaf. Senescence mechanism is utilized by plants to limit aphid growth. In addition, PAD4 provides antixenosis (deters insect settling and feeding) and antibiosis (impair aphid fecundity) against GPA and adversely impact sieve element availability to GPA. Basal expression of PAD4 contributes to antibiosis, and the GPA-induced expression of PAD4 contributes to antixenosis. Mutation in the Arabidopsis stearoyl-ACP desaturase encoding SSI2 (suppressor of SALICYLIC ACID [SA] insensitivity2) gene that results in an accelerated cell death phenotype and dwarfing, also conferred heightened antibiosis to GPA. Results of this study indicate that PAD4 is required for the ssi2-mediated enhanced antibiosis to GPA. The PAD4 protein contains conserved Ser, Asp and His residues that form the catalytic triad of many α/β fold acyl hydrolases. Arabidopsis plants expressing mutant versions of PAD4 [PAD4(S118A) and PAD4(D178A)] supported higher numbers of GPA as compared to wild type (WT) plants in no-choice tests. Furthermore, Electrical Penetration Graph (EPG) studies revealed that S118 residue in PAD4 is essential to limit GPA feeding from the sieve elements. However, the ability to deter insect settling in choice tests was not impacted by the PAD4(S118A) and PAD4(D178A) mutations, thus suggesting that PAD4s involvement in deterring insect settling and in antibiosis are determined by separate regions of PAD4. The MPL1 (MYZUS PERSICAE INDUCED LIPASE1) gene is another critical ...
Date: August 2011
Creator: Louis, Joe

Multiple Activities of Aspartate Transcarbamoylase in Burkholderia cepacia: Requirement for an Active Dihydroorotase for Assembly into the Dodecameric Holoenzyme

Description: The aspartate transcarbamoylase (ATCase) was purified from Burkholderia cepacia 25416. In the course of purification, three different ATCase activities appeared namely dodecameric 550 kDa holoenzyme, and two trimeric ATCases of 140 kDa (consists of 47 kDa PyrB subunits) and 120 kDa (consists of 40 kDa PyrB subunits) each. The 120 kDa PyrB polypeptide arose by specific cleavage of the PyrB polypeptide between Ser74 and Val75 creating an active polypeptide short by 74 amino acids. Both the 40 and 47 kDa polypeptides produced active trimers. To compare the enzyme activity of these trimers, an effector assay using nucleotides was performed. The 140 kDa trimer showed inhibition while the 120 kDa polypeptide showed less inhibition. To verify the composition of the pyrBC holoenzyme complex, B. cepacia dihydroorotase (DHOase, subunit size of 45 kDa) was purified by the pMAL protein fusion and purification system and holoenzyme reconstruction was performed using purified ATCase and DHOase. Both the 140 kDa and the 120 kDa trimers could produce holoenzymes of 550 kDa and 510 kDa, respectively. The reconstructed ATCase holoenzyme from cleaved ATCase showed better reconstruction compared to that from uncleaved ATCase in the conventional ATCase activity gel assay. To characterize the relationship between pyrimidine pathway and virulence factor production, motility tests and biofilm assays were conducted using pyrC- mutant. Even though no significant difference in growth rates was observed, there were significant differences between the wild type and mutant in the production of biofilm and virulence factors. This study will help us to understand the structure and regulation of ATCase holoenzyme with DHOase, and facilitate the use of B. cepacia as an applicable bio-tool. Additionally, we can potentially pursue more efficient drug targets for B. cepacia.
Date: December 2010
Creator: Kim, Hyunju

Novel Role of Trypsin in Zebrafish

Description: It has been shown previously in our laboratory that zebrafish produce trypsin from their gills when they are under stress, and this trypsin is involved in thrombocyte activation via PAR2 during gill bleeding. In this study, I investigated another role of the trypsin that is secreted from zebrafish. This investigation has demonstrated a novel role of trypsin in zebrafish. Not only did this investigation demonstrate the role of trypsin in zebrafish behavior, but also it showed that PAR2 might be the receptor that is involved in trypsin-mediated behavioral response. In addition, we have shown that Gq and ERK inhibitors are able to block the trypsin pathway and prevent the escaping behavior. Finally, the results of this investigation suggest that the cells that respond to trypsin are surface cells, which have an appearance similar to that of neuromast cells.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2013
Creator: Alsrhani, Abdullah Falleh

Origin and Role of Factor Viia

Description: Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, Factor VII and in small amounts in its activated form, Factor VIIa. However, the mechanism of initial generation of Factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases Factor VII activating protease, and hepsin play a role in activating Factor VII, however, it has remained controversial. In this work I estimated the levels of Factor VIIa and Factor VII for the first time in adult zebrafish plasma and also reevaluated the role of the above two serine proteases in activating Factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease did not reduce Factor VIIa levels while hepsin knockdown reduced Factor VIIa levels. After identifying role of hepsin in Factor VII activation in zebrafish, I wanted to identify novel serine proteases playing a role in Factor VII activation. However, a large scale knockdown of all serine proteases in zebrafish genome using available knockdown techniques is prohibitively expensive. Hence, I developed an inexpensive gene knockdown method which was validated with IIb gene knockdown, and knockdown all serine proteases in zebrafish genome. On performing the genetic screen I identified 2 novel genes, hepatocytes growth factor like and prostasin involved in Factor VII activation.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2013
Creator: Khandekar, Gauri

Photoactivatable Quantum Dots in Super-Resolution Microscopy of Muscle

Description: Super-resolution 3D imaging was achieved using newly synthesized photoactivatable quantum dot (PAQ dot) probes. Quantum dots were modified with a novel quencher system to make them photoactivatable. The unique properties of these PAQ dots enable single-fluorophore localization in three dimensions using a confocal microscopy optical sectioning method. Myosin and tropomyosin of rabbit myofibrilar bundles were specifically labeled with the newly synthesized PAQ dot. A sufficient number of single quantum dots were photoactivated, localized and reduced to their centroid and then reconstructed to a super-resolution image. The acquired super-resolution image shows a lateral and an axial sub-diffraction resolution and demonstrates ultrafine striations with widths less than 70 nm that are not evident by conventional confocal microscopy. The striations appear to be related to nebulin thin filament binding protein. This newly developed imaging system is cutting edge for its high resolution and localization as well its simplicity and convenience.
Date: December 2010
Creator: Akel, Amal

Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764.

Description: Cyanide is a well known toxicant that arises in the environment from both biological and industrial sources. Bacteria have evolved novel coping mechanisms for cyanide and function as principal agents in the biosphere for cyanide recycling. Some bacteria exhibit the unusual ability of growing on cyanide as the sole nitrogen source. One such organism is Pseudomonas fluorescens NCIMB 11764 (Pf11764) which employs a novel oxidative mechanism for detoxifying and assimilating cyanide. A unique complex of enzymes referred to as cyanide oxygenase (CNO) is responsible for this ability converting cyanide to ammonia which is then assimilated. Because one component of the four member CNO complex was previously shown to act on cyanide independent of the other members, its characterization was sought as a means of gaining a better understanding of the overall catalytic mechanism of the complex. Preliminary studies suggested that the enzyme belonged to a subset of nitrilase enzymes known as cyanide dihydratases (CynD), however, a cynD-like gene in Pf11764 could not be detected by PCR. Instead, a separate nitrilase (Nit) linked to cyanide metabolism was detected. The corresponding nit gene was shown to be one of a conserved set of nit genes traced to a unique cluster in bacteria known as Nit1C. To determine whether the previously described CynD enzyme was instead Nit, efforts were undertaken to isolate the enzyme. This was pursued by cloning and expressing the recombinant enzyme and by attempting to isolate the native enzyme. This thesis is concerned with the latter activity and describes the purification of a Nit-like cyanide-degrading nitrilase (NitCC) from Pf11764 to ~95% homogeneity. Purification was greatly facilitated by the discovery that fumaronitrile, as opposed to cyanide, was the preferred substrate for the enzyme (20 versus 1 U/mg protein, respectively). While cyanide was less effective as a substrate, the specificity for cyanide ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2010
Creator: Chou, Chia-Ni

Stress Response by Alternative σ-factor, RpoH, and Analysis of Posttranslational Modification of the Heat Shock Protein, Dnak, in Escherichia coli

Description: Bacteria have developed specialized responses that involve the expression of particular genes present in a given regulon. Sigma factors provide regulatory mechanisms to respond to stress by acting as transcriptional initiation factors. This work focuses on σ32 during oxidative stress in Escherichia coli. The differential response of key heat shock (HS) genes was investigated during HS and oxidative stress using qPCR techniques. While groEL and dnaJ experienced increases in transcriptional response to H2O2 (10 mM), HS (42°C), and paraquat (50 mM) exposure, the abundance of dnaK over the co-chaperones was apparent. It was hypothesized that DnaK undergoes oxidative modification by reactive carbonyls at its Lys-rich C-terminus, accounting for the differential response during oxidative stress. A σ32-mediated β-galactosidase reporter was devised to detect the activity of wild-type DnaK and DnaKV634X modified to lack the Lys-rich C-terminus. Under unstressed conditions and HS, σ32 was bound at the same rate in both strains. When subjected to H2O2, the WT DnaK strain produced significantly higher β-galactosidase than DnaKV634X (one-tailed Student’s t test p=0.000002, α=0.05) and approached the same level of output as the lacZ positive control. The β-galactosidase assay indicates that DnaK undergoes Lys modification in the WT strain, preventing the protein from binding σ32, increasing the activity of σ32, and resulting in higher β-galactosidase activity than the DnaKV634X strain. In the DnaKV634X strain DnaK continues to bind σ32 so that σ32 could not promote the production of β-galactosidase. These findings demonstrate how DnaK is oxidatively modified, hindering the interaction with σ32 in manner distinct from HS.
Date: May 2015
Creator: Martinez, Sarah N.

Studies on Plant-aphid Interactions: a Novel Role for Trehalose Metabolism in Arabidopsis Defense Against Green Peach Aphid

Description: Myzus persicae (Sülzer), commonly known as the green peach aphid (GPA), is a polyphagous insect that can infest over 100 families of economically important plants and is major pest for vegetable crops. This study utilizes the Arabidopsis-GPA model system with the aim to elucidate the role of the plant disaccharide trehalose in providing defense against GPA. This study demonstrates a novel role for TPS11 in providing defense against GPA. TPS11 expression was found to be transiently induced in Arabidopsis plants in response to GPA infestation and the TPS11 gene was required for curtailing GPA infestation. TPS11, which encodes for trehalose phosphate synthase and phosphatase activities, contributes to the transient increase in trehalose in the GPA infested tissues. This work suggests that TPS11-dependent trehalose has a signaling function in plant defense against GPA. in addition, trehalose also has a more direct role in curtailing GPA infestation on Arabidopsis. This work also shows that TPS11 is able to modulate both carbohydrate metabolism and plant defenses in response to GPA infestation. the expression of PAD4, an Arabidopsis gene required for phloem-based defenses against GPA, was found to be delayed in GPA infested tps11 mutant plants along with increased sucrose levels and lower starch levels as compared to the GPA infested wild type plants. This work provides clear evidence that starch metabolism in Arabidopsis is altered in response to GPA feeding and that TPS11-modulated increase in starch contributes to the curtailment of GPA infestation in Arabidopsis.
Date: May 2012
Creator: Singh, Vijay

Virulence Factor Production in PyrE Mutants of Pseudomonas Aeruginosa

Description: It has been shown previously in our lab that mutations in the pyrimidine pathway reduced the ability of Pseudomonas aeruginosa to produce virulence factors. Knockout mutations in pyrB, pyrC and pyrD genes of the pyrimidine pathway showed that virulence factor production was decreased. Pyoverdin, pyocyanin, hemolysin, iron chelation, motility, and adherence are all considered virulence factors. Here I further investigate the effects of mutations in the pyrimidine pathway by studying a pyrE mutant. I studied the effect of the pyrE mutation on the production of the above virulence factors. Just like the effect of pyrB, pyrC and pyrD mutations,the pyrE mutation also showed that the bacteria were deficient in producing virulence factors when compared to the wild type. The broader impact of this research would be the possibility of finding drugs that could treat patients infected with P. aeruginosa and possibly extend the lives of chronically infected patients with cystic fibrosis.
Date: May 2010
Creator: Niazy, Abdurahman

Zebrafish Von Willebrand Factor

Description: In humans, von Willebrand factor (vWF) is a key component in hemostasis and acts as a 'cellular adhesive' by letting the circulating platelets bind to exposed subendothelium. It also acts as a carrier and stabilizer of factor VIII (FVIII). A dysfunction or reduction of vWF leads to von Willebrand disease (vWD), resulting in bleeding phenotype which affects 1% of the population. Currently there are a variety of animal models used for the study of vWF and vWD; however, they do not possess the advantages found in zebrafish. Therefore, we set out to establish zebrafish as a model for the investigation of vWF and vWD through the use of bioinformatics and various molecular techniques. Using bioinformatics we found that the vWF gene is located on chromosome 18, that the GPIb? protein sequence is conserved. Confirmation of vWF production was shown by means of immunostaining and by RT-PCR, in thrombocytes as well as in veins and arteries. Evidence of vWF involvement in hemostasis and thrombosis was shown using MO and VMO technology to produce a vWD like phenotype, resulting in an increase in TTO and TTA, as well as a reduction in FVIII when blood was tested using the kPTT assay, coinciding with a decrease in vWF. Stimate treatment provided opposite results of MO and VMO, showing a decrease in TTO and TTA. Investigation of the role of microparticles in hemostasis and their interaction with vWF resulted in a conclusion that the GPIb? receptor should exist on MPs and that it may interact not only with zebrafish vWF but also with human UL-vWF. Agglutination of MPs in the presence of UL-vWF but in the absence of ristocetin and plasma, treatment with ADAMTS-13 abolishing the interaction between MPs and UL-vWF provided evidence that vWF interacts with MPs probably with the GPIb?. We also ...
Date: August 2012
Creator: Carrillo, Maira M.