UNT Libraries - Browse

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Characterization of Moraxella bovis Aspartate Transcarbamoylase

Description: Aspartate transcarbamoylase (ATCase) catalyzes the first committed step in the pyrimidine biosynthetic pathway. Bacterial ATCases have been divided into three classes, class A, B, and C, based on their molecular weight, holoenzyme architecture, and enzyme kinetics. Moraxella bovis is a fastidious organism, the etiologic agent of infectious bovine keratoconjunctivitis (IBK). The M. bovis ATCase was purified and characterized for the first time. It is a class A enzyme with a molecular mass of 480 to 520 kDa. It has a pH optimum of 9.5 and is stable at high temperatures. The ATCase holoenzyme is inhibited by CTP > ATP > UTP. The Km for aspartate is 1.8 mM and the Vmax 1.04 ┬Ámol per min, where the Km for carbamoylphosphate is 1.05 mM and the Vmax 1.74 ┬Ámol per min.
Date: December 2001
Creator: Hooshdaran, Sahar

Comparative Mitochondrial DNA Sequence Diversity in Isolated and Open Populations of Southern Flying Squirrels

Description: Three populations of Southern flying squirrels were studied in the Ouachita Mountains of Arkansas to assess the impact of population subdivision-due to island formation--on the population genetics of Glaucomys volans. One island, one mainland, and one open population were investigated. A 367 nucleotide hypervariable region of mitochondrial DNA was sequenced in individuals from each population. Individuals and populations were compared to assess relatedness. Higher sequence diversity was detected in the open and island populations. One island individual shared characters with both the island and mainland populations. Results support the hypothesis that the mainland population may have reduced gene flow. Also, the island population may have been originally founded by at least two maternal lineages.
Date: August 1999
Creator: Cook, Melaney Birdsong

Linkage of a nitrilase-containing Nit1C gene cluster to cyanide utilization in Pseudomonas fluorescens NCIMB 11764.

Description: Pseudomonas fluorescens NCIMB 11764 (Pf11764) is uniquely able to grow on the poison cyanide as its sole nitrogen source. It does so by converting cyanide oxidatively to carbon dioxide and ammonia, the latter being assimilated into cellular molecules. This requires a complex enzymatic machinery that includes nitrilase and oxygenase enzymes the nature of which are not well understood. In the course of a proteomics analysis aimed at achieving a better understanding of the proteins that may be required for cyanide degradation by Pf11764, an unknown protein of 17.8 kDa was detected in cells exposed to cyanide. Analysis of this protein by ESI-coupled mass spectrometry and bioinformatics searches gave evidence of strong homology with a protein (Hyp1) of unknown function (hypothetical) present in the bacterium Photorhabdus luminescens subsp. laumondii TTO1 (locus plu_1232). A search of available microbial genomes revealed a number of Hyp1 orthologs the genes of which are found in a conserved gene cluster known as Nit1C. Independent studies revealed that in addition to Hyp1, Pf11764 possesses a gene (nit) specifying a nitrilase enzyme whose closest homologue is a nitrilase found in Nit1C gene clusters (77% amino acid identity). DNA sequence analysis has further revealed that indeed, hyp1Pf11764 and nitPf11764 are contained in a cluster that includes also a gene specifying an oxygenase. Given the possible connection of Nit1C-endoded nitrilase and oxygenase enzymes to enzymatic cyanide degradation, there is strong reason for thinking that the genes specifying these enzymes contribute to bacterial growth on cyanide in those bacteria containing the Nit1C cluster. Because the biological function of the Hyp1 protein is currently unknown, it was cloned and the protein expressed in E. coli so that its properties could further be explored. Unfortunately, the expression of the protein in an insoluble form complicated these analyses. However, at least two lines of ...
Date: May 2009
Creator: Ghosh, Pallab

Novel Role of Trypsin in Zebrafish

Description: It has been shown previously in our laboratory that zebrafish produce trypsin from their gills when they are under stress, and this trypsin is involved in thrombocyte activation via PAR2 during gill bleeding. In this study, I investigated another role of the trypsin that is secreted from zebrafish. This investigation has demonstrated a novel role of trypsin in zebrafish. Not only did this investigation demonstrate the role of trypsin in zebrafish behavior, but also it showed that PAR2 might be the receptor that is involved in trypsin-mediated behavioral response. In addition, we have shown that Gq and ERK inhibitors are able to block the trypsin pathway and prevent the escaping behavior. Finally, the results of this investigation suggest that the cells that respond to trypsin are surface cells, which have an appearance similar to that of neuromast cells.
Date: May 2013
Creator: Alsrhani, Abdullah Falleh

Purification of Cyanide-Degrading Nitrilase from Pseudomonas Fluorescens NCIMB 11764.

Description: Cyanide is a well known toxicant that arises in the environment from both biological and industrial sources. Bacteria have evolved novel coping mechanisms for cyanide and function as principal agents in the biosphere for cyanide recycling. Some bacteria exhibit the unusual ability of growing on cyanide as the sole nitrogen source. One such organism is Pseudomonas fluorescens NCIMB 11764 (Pf11764) which employs a novel oxidative mechanism for detoxifying and assimilating cyanide. A unique complex of enzymes referred to as cyanide oxygenase (CNO) is responsible for this ability converting cyanide to ammonia which is then assimilated. Because one component of the four member CNO complex was previously shown to act on cyanide independent of the other members, its characterization was sought as a means of gaining a better understanding of the overall catalytic mechanism of the complex. Preliminary studies suggested that the enzyme belonged to a subset of nitrilase enzymes known as cyanide dihydratases (CynD), however, a cynD-like gene in Pf11764 could not be detected by PCR. Instead, a separate nitrilase (Nit) linked to cyanide metabolism was detected. The corresponding nit gene was shown to be one of a conserved set of nit genes traced to a unique cluster in bacteria known as Nit1C. To determine whether the previously described CynD enzyme was instead Nit, efforts were undertaken to isolate the enzyme. This was pursued by cloning and expressing the recombinant enzyme and by attempting to isolate the native enzyme. This thesis is concerned with the latter activity and describes the purification of a Nit-like cyanide-degrading nitrilase (NitCC) from Pf11764 to ~95% homogeneity. Purification was greatly facilitated by the discovery that fumaronitrile, as opposed to cyanide, was the preferred substrate for the enzyme (20 versus 1 U/mg protein, respectively). While cyanide was less effective as a substrate, the specificity for cyanide ...
Date: December 2010
Creator: Chou, Chia-Ni