UNT Libraries - Browse

ABOUT BROWSE FEED
Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Description: Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Date: May 2004
Creator: Akinola, Adeniyi O.

Diphosphine Ligand Substitution in H4Ru4(CO)12: X-ray Diffraction Structures and Reactivity Studies of the Diphosphine Substituted Cluster Products

Description: The tetraruthenium cluster H4Ru4(CO)12 has been studied for its reactivity with the unsaturated diphosphine ligands (Z)-Ph2PCH=CHPPh2, 4,5-bis (diphenylphosphino)-4-cyclopenten-1,3-dione, bis(diphenyphosphino)benzene and 1,8- bis(diphenyl phosphino)naphthalene under thermal, near-UV photolysis, and Me3NO-assisted activation. All three cluster activation methods promote loss of CO and furnish the anticipated substitution products that possess a chelating diphosphine ligand. Clusters 1, 2, 3 and 4 have been characterized in solution by IR and NMR spectroscopies, and these data are discussed with respect to the crystallographically determined structures for all new cluster compounds. The 31P NMR spectral data and the solid-state structures confirm the presence of a chelating diphosphine ligand in all four new clusters. Sealed NMR tubes containing clusters 1, 2, 3 and 4 were found to be exceeding stable towards near-UV light and temperatures up to ca. 100°C. The surprisingly robust behavior of the new clusters is contrasted with the related cluster Ru3(CO)10(bpcd) that undergoes fragmentation to the donor-acceptor compound Ru2(CO)6(bpcd) and the phosphido-bridged compound Ru2(CO)6 (µ-PPh2)[µ-C=C(PPh2)C(O)CH2C(O)] under mild conditions. The electrochemical properties have been investigated in the case of clusters 1 and 2 by cyclic voltammetry, and the findings are discussed with respect to the reported electrochemical data on the parent cluster H4Ru4(CO)12.
Date: December 2006
Creator: Kandala, Srikanth

Effects of Web-based Instruction in High School Chemistry.

Description: The intent of this study is to identify correlations that might exist between Web-based instruction and higher assessment scores in secondary education. The study framework was held within the confines of a public high school chemistry classroom. Within this population there were students identified as gifted and talented (GT) as well as those without this designation. These two classifications were examined for statistically higher assessment scores using a two-tailed t-test. Results indicated that females outperformed males on pre- and post- instructional unit tests. All subgroups improved their logical-thinking skills and exhibited positive attitudes towards Web-based instruction. In general, Web-based instruction proved beneficial to improving classroom performance of all GT and non-GT groups as compared to traditional classroom instruction.
Date: May 2003
Creator: Stratton, Eric W.

Layered Double Hydroxides and the Origins of Life on Earth

Description: A brief introduction to the current state of research in the Origins of Life field is given in Part I of this work. Part II covers original research performed by the author and co-workers. Layered Double Hydroxide (LDH) systems are anion-exchanging clays that have the general formula M(II)xM(III)(OH)(2x+2)Y, where M(II) and M(III) are any divalent and trivalent metals, respectively. Y can be nearly any anion, although modern naturally occuring LDH systems incorporate carbonate (CO32-), chloride (Cl-), or sulfate (SO42-) anions. Intercalated cobalticyanide anion shows a small yet observable deviation from local Oh symmetry causing small differences between its oriented and non-oriented infrared spectra. Nitroprusside is shown to intercalate into 2:1 Mg:Al LDH with decomposition to form intercalated ferrocyanide and nitrosyl groups of an unidentified nature. The [Ru(CN)6]4- anion is shown to intercalate into layered double hydroxides in the same manner as other hexacyano anions, such as ferrocyanide and cobalticyanide, with its three-fold rotational axis perpendicular to the hydroxide sheets. The square-planar tetracyano-nickelate(II), -palladate(II), and platinate(II) anions were intercalated into both 2:1 and 3:1 Mg:Al layered double hydroxides (LDH). The basal spacings in the 2:1 hosts are approximately 11 Å, indicating that the anions are inclined approximately 75 degrees relative to the hydroxide layers, while in the 3:1 hosts the square-planar anions have enough space to lie more nearly parallel to the LDH cation layers, giving basal spacings of approximately 8 Å. It has been found that the LDH Mg2Al(OH)6Cl catalyzes the self-addition of cyanide, to give in a one-pot reaction at low concentrations an increased yield of diaminomaleonitrile and in addition, at higher ($0.1M) concentrations, a purple-pink material that adheres to the LDH. We are investigating whether this reaction also occurs with hydrotalcite itself, what is the minimum effective concentration of cyanide, and what can be learned about the products ...
Date: May 2001
Creator: Brister, Brian

Preparation and characterization of praseodymium oxide films and powders.

Description: Nanocrystalline praseodymium oxide films have been successfully generated on stainless steel substrates. The electrochemical deposition was performed in the cathode compartment of a divided electrochemical cell with a regular three-electrode configuration. The green films obtained by electrodeposition were then annealed at high temperatures for 1-3 hours. X-ray diffraction revealed the fluorite structure of Pr6O11 and the crystallite size was calculated. X-ray photoelectron spectroscopy was employed to study the composition of the oxide films and also the oxidation state of Pr. Scanning electron microscopy was utilized to study the surface texture and microstructure of deposits. Fourier transform infrared spectrometery was used to investigate the composition of the films. The effects of different conditions on the green films were also studied such as different pH values of the electrolyte solution, different deposition modes, different supporting electrolytes and different applied current densities. Sintering experiments were conducted to investigate the properties of the green films. Praseodymium oxide powders were also successfully prepared by combining electrochemical methods with sintering processes. The praseodymium oxide powders were characterized by X-ray diffraction and Fourier transform infrared spectroscopy. The crystallite sizes of the powders were evaluated.
Date: May 2004
Creator: Shang, Yajuan

Synthesis and X-ray Diffraction Structure of 8,9-Dichloropyrrolo[1,2-a]perimidin-10-one

Description: Treatment of dichloromaleic anhydride and 1,8-diaminonaphthalene in either benzene or toluene under refluxing conditions gives low yields of the new heterocyclic compound 8,9-dichloropyrrolo[1,2-a]perimidin-10-one. This product has been isolated and characterized in solution by NMR, IR, and UV/vis spectroscopies, and the solid-state structure of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been established by X-ray crystallography. The nature of the HOMO and LUMO levels of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one has been studied by extended Hückel molecular orbital calculations.
Date: August 2003
Creator: Chen, Tao