UNT Libraries - Browse

ABOUT BROWSE FEED
Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Carbon Nanotube/Microwave Interactions and Applications to Hydrogen Fuel Cells.

Description: One of the leading problems that will be carried into the 21st century is that of alternative fuels to get our planet away from the consumption of fossil fuels. There has been a growing interest in the use of nanotechnology to somehow aid in this progression. There are several unanswered questions in how to do this. It is known that carbon nanotubes will store hydrogen but it is unclear how to increase that storage capacity and how to remove this hydrogen fuel once stored. This document offers some answers to these questions. It is possible to implant more hydrogen in a nanotube sample using a technique of ion implantation at energy levels ~50keV and below. This, accompanied with the rapid removal of that stored hydrogen through the application of a microwave field, proves to be one promising avenue to solve these two unanswered questions.
Date: May 2004
Creator: Imholt, Timothy James

Characterization, Properties and Applications of Novel Nanostructured Hydrogels.

Description: The characterization, properties and applications of the novel nanostructured microgel (nanoparticle network and microgel crystal) composed of poly-N-isopropylacrylanmide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid(AA) have been investigated. For the novel nanostructured hydrogels with the two levels of structure: the primary network inside each individual particle and the secondary network of the crosslinked nanoparticles, the new shear modulus, drug release law from hydrogel with heterogeneous structure have been studied. The successful method for calculating the volume fraction related the phase transition of colloid have been obtained. The kinetics of crystallization in an aqueous dispersion of PNIPAM particles has been explored using UV-visible transmission spectroscopy. This dissertation also includes the initial research on the melting behavior of colloidal crystals composed of PNIPAM microgels. Many new findings in this study area have never been reported before. The theoretical model for the columnar crystal growth from the top to bottom of PNIPAM microgel has been built, which explains the growth mechanism of the novel columnar hydrogel colloidal crystals. Since the unique structure of the novel nanostructured hydrogels, their properties are different with the conventional hydrogels and the hard-sphere-like system. The studies and results in this dissertation have the important significant for theoretical study and valuable application of these novel nanostructured hydrogels.
Date: December 2006
Creator: Tang, Shijun

Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Description: Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunications industry. Therefore, the study of Er-doped Si nanoparticles may have practical significance. The goals of the research described in this dissertation are to investigate vapor phase pyrolysis methods and to characterize the microstructure and associated defects, particles size distributions and photoluminescence efficiencies of doped and undoped Si nanoparticles using analytical transmission electron microscopy, high resolution electron microscopy, and optical spectroscopy. Er-doped and undoped Si nanoparticles were synthesized via vapor-phase pyrolysis of disilane at Texas Christian University. To achieve monodisperse size distributions, a process with fast nucleation and slow growth was employed. Disilane was diluted to 0.48% with helium. A horizontal pyrolysis oven was maintained at a temperature of 1000 °C. The oven length was varied from 1.5 cm to 6.0 cm to investigate the influence of oven length on the properties of the nanoparticles. The Si nanoparticles were collected in ethylene-glycol. The doped and undoped Si nanoparticles have a Si diamond cubic crystal structure. Neither Er precipitation, Er oxides or Er silicides were detected in any of the samples. The Er dopant concentration was about 2 atom% for doped samples from the 3.0 and 6.0 cm ovens as determined by quantitative analysis using X-ray energy dispersive spectroscopy. The average Si nanoparticle size increases from 11.3 to 15.2 nm in the doped samples and from 11.1 to 15.7 nm in the undoped samples as the oven length increases from 1.5 to 6.0 cm. HREM data ...
Date: May 2000
Creator: Chen, Yandong

Monte Carlo simulation and experimental studies of the production of neutron-rich medical isotopes using a particle accelerator.

Description: The developments of nuclear medicine lead to an increasing demand for the production of radioisotopes with suitable nuclear and chemical properties. Furthermore, from the literature it is evident that the production of radioisotopes using charged-particle accelerators instead of nuclear reactors is gaining increasing popularity. The main advantages of producing medical isotopes with accelerators are carrier free radionuclides of short lived isotopes, improved handling, reduction of the radioactive waste, and lower cost of isotope fabrication. Proton-rich isotopes are the result of nuclear interactions between enriched stable isotopes and energetic protons. An interesting observation is that during the production of proton-rich isotopes, fast and intermediately fast neutrons from nuclear reactions such as (p,xn) are also produced as a by-product in the nuclear reactions. This observation suggests that it is perhaps possible to use these neutrons to activate secondary targets for the production of neutron-rich isotopes. The study of secondary radioisotope production with fast neutrons from (p,xn) reactions using a particle accelerator is the main goal of the research in this thesis.
Date: May 2002
Creator: Rosencranz, Daniela Necsoiu

Random growth of interfaces: Statistical analysis of single columns and detection of critical events.

Description: The dynamics of growth and formation of surfaces and interfaces is becoming very important for the understanding of the origin and the behavior of a wide range of natural and industrial dynamical processes. The first part of the paper is focused on the interesting field of the random growth of surfaces and interfaces, which finds application in physics, geology, biology, economics, and engineering among others. In this part it is studied the random growth of surfaces from within the perspective of a single column, namely, the fluctuation of the column height around the mean value, which is depicted as being subordinated to a standard fluctuation-dissipation process with friction g. It is argued that the main properties of Kardar-Parisi-Zhang theory are derived by identifying the distribution of return times to y(0) = 0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of the theoretical prediction with the numerical treatment of the model of ballistic deposition is remarkably good, in spite of the finite size effects affecting this model. The second part of the paper deals with the efficiency of the diffusion entropy analysis (DEA) when applied to the studies of stromatolites. In this case it is shown that this tool can be confidently used for the detection of complexity. The connection between the two studies is established by the use of the DEA itself. In fact, in both analyses, that is, the random growth of interfaces and the study of stromatolites, the method of diffusion entropy is able to detect the real scaling of the system, namely, the scaling of the process is determined by genuinely random events, also called critical events.
Date: August 2004
Creator: Failla, Roberto

Scanning Tunneling Microscopy of Homo-Epitaxial Chemical Vapor Deposited Diamond (100) Films

Description: Atomic resolution images of hot-tungsten filament chemical-vapor-deposition (CVD) grown epitaxial diamond (100) films obtained in ultrahigh vacuum (UHV) with a scanning tunneling microscope (STM) are reported. A (2x1) dimer surface reconstruction and amorphous atomic regions were observed on the hydrogen terminated (100) surface. The (2x1) unit cell was measured to be 0.51"0.01 x 0.25"0.01 nm2. The amorphous regions were identified as amorphous carbon. After CVD growth, the surface of the epitaxial films was amorphous at the atomic scale. After 2 minutes of exposure to atomic hydrogen at 30 Torr and the sample temperature at 500° C, the surface was observed to consist of amorphous regions and (2x1) dimer reconstructed regions. After 5 minutes of exposure to atomic hydrogen, the surface was observed to consist mostly of (2x1) dimer reconstructed regions. These observations support a recent model for CVD diamond growth that is based on an amorphous carbon layer that is etched or converted to diamond by atomic hydrogen. With further exposure to atomic hydrogen at 500° C, etch pits were observed in the shape of inverted pyramids with {111} oriented sides. The temperature dependence of atomic hydrogen etching of the diamond (100) surface was also investigated using UHV STM, and it was found that it was highly temperature dependent. Etching with a diamond sample temperature of 200° C produced (100) surfaces that are atomically rough with no large pits, indicating that the hydrogen etch was isotropic at 200° C. Atomic hydrogen etching of the surface with a sample temperature of 500° C produced etch-pits and vacancy islands indicating an anisotropic etch at 500° C. With a sample temperature of 1000° C during the hydrogen etch, the (100) surface was atomically smooth with no pits and few single atomic vacancies, but with vacancy rows predominantly in the direction of the dimer ...
Date: May 2000
Creator: Stallcup, Richard E.

The Stopping of Energetic Si, P and S Ions in Ni, Cu, Ge and GaAs Targets

Description: Accurate knowledge of stopping powers is essential for these for quantitative analysis and surface characterization of thin films using ion beam analysis (IBA). These values are also of interest in radiobiology and radiotherapy, and in ion- implantation technology where shrinking feature sizes puts high demands on the accuracy of range calculations. A theory that predicts stopping powers and ranges for all projectile-target combinations is needed. The most important database used to report the stopping powers is the SRIM/TRIM program developed by Ziegler and coworkers. However, other researchers report that at times, these values differ significantly from experimental values. In this study the stopping powers of Si, P and S ions have been measured in Ni, Cu, Ge and GaAs absorbers in the energy range ~ 2-10 MeV. For elemental films of Ni, Cu and Ge, the stopping of heavy ions was measured using a novel ERD (Elastic Recoil Detection) based technique. In which an elastically recoiled lighter atom is used to indirectly measure the energy of the incoming heavy ion using a surface barrier detector. In this way it was possible to reduce the damage and to improve the FWHM of the detector. The results were compared to SRIM-2000 predictions and other experimental measurements. A new technique derived from Molecular Beam Epitaxy (MBE) was developed to prepare stoichiometric GaAs films on thin carbon films for use in transmission ion beam experiments. The GaAs films were characterized using X-ray Photoelectron Spectroscopy (XPS) and Particle Induced X-ray Emission (PIXE). These films were used to investigate the stopping powers of energetic heavy ions in GaAs and to provide data for the calculation of Bethe-Bloch parameters in the framework of the Modified Bethe-Bloch theory. As a result of this study, stopping power data are available for the first time for Si and P ions ...
Date: December 2001
Creator: Nigam, Mohit