UNT Libraries - 2 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Materials properties of ruthenium and ruthenium oxides thin films for advanced electronic applications.

Description: Ruthenium and ruthenium dioxide thin films have shown great promise in various applications, such as thick film resistors, buffer layers for yttrium barium copper oxide (YBCO) superconducting thin films, and as electrodes in ferroelectric memories. Other potential applications in Si based complementary metal oxide semiconductor (CMOS) devices are currently being studied. The search for alternative metal-based gate electrodes as a replacement of poly-Si gates has intensified during the last few years. Metal gates are required to maintain scaling and performance of future CMOS devices. Ru based materials have many desirable properties and are good gate electrode candidates for future metal-oxide-semiconductor (MOS) device applications. Moreover, Ru and RuO2 are promising candidates as diffusion barriers for copper interconnects. In this thesis, the thermal stability and interfacial diffusion and reaction of both Ru and RuO2 thin films on HfO2 gate dielectrics were investigated using Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). An overview of Ru and RuO2/HfO2 interface integrity issues will be presented. In addition, the effects of C ion modification of RuO2 thin films on the physico-chemical and electrical properties are evaluated.
Date: May 2006
Creator: Lim, ChangDuk

Mechanical behavior and performance of injection molded semi-crystalline polymers.

Description: I have used computer simulations to investigate the behavior of polymeric materials at the molecular level. The simulations were performed using the molecular dynamics method with Lennard-Jones potentials defining the interactions between particles in the system. Significant effort was put into the creation of realistic materials on the computer. For this purpose, an algorithm was developed based on the step-wise polymerization process. The resulting computer-generated materials (CGMs) exhibit several features of real materials, such as molecular weight distribution and presence of chain entanglements. The effect of the addition of a liquid crystalline (LC) phase to the flexible matrix was also studied. The concentration and distribution of the second phase (2P) were found to influence the mechanical and tribological properties of the CGMs. The size of the 2P agglomerates was found to have negligible influence on the properties within the studied range. Moreover, although the 2P reinforcement increases the modulus, it favors crack formation and propagation. Regions of high LC concentration exhibit high probability of becoming part of the crack propagation path. Simulations of the tensile deformation under a uniaxial force have shown that the molecular deformation mechanisms developing in the material depend on several variables, such as the magnitude of the force, the force increase rate, and the level of orientation of the chains. Three-dimensional (3D) graphical visualization tools were developed for representation and analysis of the simulation results. These also present interesting educational possibilities. Computer simulations provide us information which is inaccessible experimentally. From the concomitant use of simulations and experiments, a better understanding of the molecular phenomena that take place during deformation of polymers has been established.
Date: August 2003
Creator: Simoes, Ricardo J. F.