UNT Theses and Dissertations - 2 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

The Effect of Mode and Intensity on Vo2 Kinetics in the Severe Intensity Domain

Description: The purpose of this study was to evaluate the effect of mode and intensity on VO2 kinetics in the severe intensity domain. Seventeen participants completed 3-7 tests each on a cycle ergometer and treadmill. For each test, Tfatigue, VO2max, Tmean response, VO2GAIN, TVO2max and T@VO2max were determined. Linear regression techniques were used to describe the relationship between TVO2max and Tfatigue . VO2max values were higher in running. The VO2 response profile was faster for running than cycling and faster at higher intensities. The faster VO2 response in running may be associated with larger active muscle mass or differences in muscle activation patterns. The faster response at higher intensities may suggest that VO2 response is driven by O2 demand.
Date: May 2000
Creator: Updyke, Rhonda S.
Partner: UNT Libraries

Oxygen Uptake Kinetics in Severe Intensity Exercise

Description: The purpose of this study was to describe mathematically the oxygen uptake kinetics during cycle ergometry, and to examine the effect of intensity on the kinetic responses within the severe domain. Sixteen volunteers performed a series of exercise tests at a range of intensities selected to elicit fatigue in ~3 to 10 min. A simple mono-exponential model effectively described the response across all intensities. There was a positive correlation between the response time and the time to fatigue, demonstrating that the maximal oxygen uptake was achieved faster at higher intensities within the severe domain. Models incorporating two components effectively described the responses only in tests lasting 8 min or more. It was concluded that there is a second, slow component in the oxygen uptake response only at the lower intensities within the severe domain.
Date: May 2000
Creator: Blumoff, Sonja
Partner: UNT Libraries