UNT Theses and Dissertations - 359 Matching Results

Search Results

Delivery of CRISPR/Cas9 into Blood Cells of Zebrafish: Potential for Genome Editing in Somatic Cells

Description: Factor VIII is a clotting factor found on the intrinsic side of the coagulation cascade. A mutation in the factor VIII gene causes the disease Hemophilia A, for which there is no cure. The most common treatment is administration of recombinant factor VIII. However, this can cause an immune response that renders the treatment ineffective in certain hemophilia patients. For this reason a new treatment, or cure, needs to be developed. Gene editing is one solution to correcting the factor VIII mutation. CRISPR/Cas9 mediated gene editing introduces a double stranded break in the genomic DNA. Where this break occurs repair mechanisms cause insertions and deletions, or if a template oligonucleotide can be provided point mutations could be introduced or corrected. However, to accomplish this goal for editing factor VIII mutations, a way to deliver the components of CRISPR/Cas9 into somatic cells is needed. In this study, I confirmed that the CRISPR/Cas9 system was able to create a mutation in the factor VIII gene in zebrafish. I also showed that the components of CRISPR/Cas9 could be piggybacked by vivo morpholino into a variety of blood cells. This study also confirmed that the vivo morpholino did not interfere with the gRNA binding to the DNA, or Cas9 protein inducing the double stranded break.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Schneider, Sara Jane
Partner: UNT Libraries

Development of a Targeted Protein Residue Analysis Approach in Archaeology

Description: Liquid chromatography-mass spectrometry (LC-MS) based proteomic methods have provided archaeologists with a powerful tool for the discovery and identification of proteins within artifacts. Traditionally, discovery-based methods have utilized a non-targeted full mass scan method in an attempt to identify all proteins present within a given sample. However, increased sensitivity is often needed to target specific proteins in order to test hypotheses. Proteins present within archaeological materials present a unique challenge, as they are often subjected to a variety of chemical transformations both before and after burial. Any preserved proteins will be present within a complex mixture of compounds, and full mass scans often fail to detect less abundant proteins of interest. Consistent and reliable targeted methods are needed to detect protein biomarkers. Taphonomic experimentation was employed as a means to identify the effect of particular processes and conditions on the preservation of mare's milk proteins. In addition, three LC-MS methods were evaluated for their efficiency in identifying mare's milk-specific peptide biomarkers from experimental pottery samples. The ability to reliably detect the presence of these species-specific peptides can help provide evidence about past cultural groups, including the origins of dairying and animal domestication.
Date: August 2017
Creator: Scott, Ashley
Partner: UNT Libraries

Evaluating the Role of UV Exposure and Recovery Regimes in PAH Photo-Induced Toxicity

Description: Polyaromatic hydrocarbons (PAHs) are contaminants synthesized through incomplete combustion of carbon based substances. PAHs are known to be photodynamic and toxicity increases exponentially when in contact with ultraviolet radiation (UV). The effect of UV absent recovery periods and potential for latent toxicity during photo-induced toxicity are previously unknown and are not included within the toxicity model. Results of equal interval tests further support the current reciprocity model as a good indicator of PAH photo-induced toxicity. Interval test results also indicate a possible presence of time-dependent toxicity and recovery thresholds and should be included into toxicity risk assessments. Moreover, results of latent effects assays show that latent mortality is a significant response to PAH photo-induced toxicity and should be included into toxicity risk assessments. The present research demonstrates that UV exposure time rate is a significant driving force of PAH photo-induced toxicity.
Date: August 2017
Creator: Gnau, Jennifer Leigh
Partner: UNT Libraries

Generating Molecular Biology Tools to Investigate the Ca2+ Binding Ability of Arabidopsis TON2

Description: The position of the cell division plane in plants is determined by the position of the preprophase band. The pre prophase band (PPB) is a ring of microtubules centered around the nucleus on the inner side of plasma membrane that establishes the cortical division site. The PPB forms at the end of G2 and breaks down at the end of prophase leaving behind protein markers of its position that are collectively called the cortical division site. During cytokinesis the phragmoplast expands towards the cortical division site and mediates the fusion of the new cell plate with the mother cell at that position. Several proteins necessary for PPB formation in plants have been identified, including maize DCD1 and ADD1 and Arabidopsis TON2, which are all type 2A protein phosphatase (PP2A)B" regulatory subunits. DCD1, ADD1, and TON2 localize to the PPB and the cortical division site through metaphase. The PP2A subunits each have two EF-hand domains, which are predicted to bind calcium ions. Since calcium ions are important for some aspects of cell division, we designed a series of constructs to test if TON2 binds calcium. TON2 protein was cloned into expression vectors, pET42a, and expression of TON2 protein was confirmed via Western blotting and immunodetection using a GST antibody. Site directed mutagenesis was used to mutate the TON2 EF-hand domains and mutated cDNAs were also cloned into expression vectors. These were then expressed in bacterial systems. Finally, the GST tagged proteins were purified. In the future, wild-type and mutated proteins TON2 proteins will used in calcium binding assays to determine if TON2 binds calcium.
Date: August 2017
Creator: Shao, Danyang
Partner: UNT Libraries

Investigating Human Gut Microbiome in Obesity with Machine Learning Methods

Description: Obesity is a common disease among all ages that has threatened human health and has become a global concern. Gut microbiota can affect human metabolism and thus may modulate obesity. Certain mixes of gut microbiota can protect the host to be healthy or predispose the host to obesity. Modern next-generation sequencing technique allows accessing huge amount of genetic information underlying microbiota and thus provides new insights into the functionality of these micro-organisms and their interactions with the host. Multiple previous studies have demonstrated that the microbiome might contribute to obesity by increasing dietary energy harvest, promoting fat deposition and triggering systemic inflammation. However, these researches are either based on lab cultivation studies or basic statistical analysis. In order to further explore how gut microbiota affect obesity, this thesis utilize a series of machine learning methods to analyze large amount of metagenomics data from human gut microbiome. The publicly available HMP (Human Microbiome Project) metagenomic sequencing data, contain microbiome data for healthy adults, including overweight and obese individuals, were used for this study. HMP gut data were organized based on two different feature definitions: taxonomic information and metabolic reconstruction information. Several widely used classification algorithms: namely Naive Bayes, Random Forest, SVM and elastic net logistic regression were applied to predict healthy or obese status of the subjects based on the cross-validation accuracy. Furthermore, the corresponding feature selection algorithms were used to identify signature features in each dataset that lead to the differences between healthy and obese samples. The results showed that these algorithms perform poorly on taxonomic data than metabolic pathway data though lots of selected taxa are still supported by literature. Among all the combinations between different algorithms and data, elastic net logistic regression has the best cross-validation performance and thus becomes the best model. In this model, several important ...
Date: August 2017
Creator: Zhong, Yuqing
Partner: UNT Libraries

Neurological Responses to a Glucose Diet in Caenorhabditis elegans

Description: TRPV channels play a role in both mammalian insulin signaling, with TRPV1 expression in pancreatic beta-cells, and in C. elegans insulin-like signaling through expression of OSM-9, OCR-1, and OCR-2 in stress response pathways. In response to a glucose-supplemented diet, C. elegans are know to have sensitivity to anoxic stress, exhibit chemotaxis attraction, and display reduced egg-laying rate. Transcriptome analysis reveals that glucose stimulates nervous system activity with increased transcript levels of genes regulating neurotransmitters. Ciliated sensory neurons are needed for a reduced egg-laying phenotype on a glucose-supplemented diet. Egg-laying rate is not affected when worms graze on glucose-supplemented Delta-PTS OP50 E. coli, which is defective in glucose uptake. This suggests a possible sensory neuron obstruction by exopolysaccharides produced by standard OP50 E. coli on glucose, eliciting a starvation response from the worm and causing reduced egg-laying rate. Glucose chemotaxis is affected in specific TRPV subunit allele mutants: ocr-2(vs29) and osm-9(yz6), serotonin receptor mutants: ser-1(ok345) and mod-1(ok103), and G-alpha protein mutant: gpa-10(pk362). TRPV deletion mutants had no effect on glucose chemotaxis, alluding to the modality role pf TRPV alleles in specific sensory neurons. The role of serotonin in a reduced egg-laying rate with glucose remains unclear.
Date: August 2017
Creator: Dumesnil, Dennis
Partner: UNT Libraries

Adrenergic and Cholinergic Regulation of Cardiovascular Function in Embryonic Neotropic Cormorants (Phalacrocorax basilianus)

Description: Investigations of cholinergic and adrenergic tone on heart rate (fH) and mean arterial pressure (Pm) during embryonic development have been conducted on numerous avian species. While these investigations have documented that adrenergic tone, a continuous stimulation, on fH and Pm is vital to embryonic development in the birds studied to date, development of cholinergic tone on fH has been shown to vary even within species. Further, past studies have been bias to focus primarily on precocial species while altricial species remain poorly understood in this context. The goal of this investigation was to investigate the role of cholinergic and adrenergic tone on fH and Pm of an altricial species, the neotropic cormorant (P. brasilianus) to address this bias. The embryonic neotropic cormorant possesses B-and-a adrenergic tone on fH and Pm at 70% and 90% incubation while cholinergic tone on fH occurs at 90% incubation. This pattern of control is similar to that previously reported for several species of precocial birds suggesting the development of tonic cardiovascular regulation may be conserved across avian taxa.
Date: May 2017
Creator: Cummins, James B
Partner: UNT Libraries

Development of von Willebrand Factor Zebrafish Mutant Using CRISPR/Cas9 Mediated Genome Editing

Description: von Willebrand factor (VWF) protein acts in the intrinsic coagulation pathway by stabilizing FVIII from proteolytic clearance and at the site of injury, by promoting the adhesion and aggregation of platelets to the exposed subendothelial wall. von Willebrand disease (VWD) results from quantitative and qualitative deficiencies in VWF protein. The variability expressivity in phenotype presentations is in partly caused by the action of modifier genes. Zebrafish has been used as hemostasis animal model. However, it has not been used to evaluate VWD. Here, we report the development of a heterozygote VWF mutant zebrafish using the genome editing CRISPR/Cas9 system to screen for modifier genes involved in VWD. We designed CRISPR oligonucleotides and inserted them into pT7-gRNa plasmid. We then prepared VWF gRNA along with the endonuclease Cas9 RNA from Cas9 plasmid. We injected these two RNAs into 1-4 cell-stage zebrafish embryos and induced a mutation in VWF exon 29 of the zebrafish with a mutagenesis rate of 16.6% (3/18 adult fish). Also, we observed a germline transmission with an efficiency rate of 5.5% (1/18 adult fish). We obtained a deletion in exon 29 which should result in truncated VWF protein.
Date: May 2017
Creator: Toffessi Tcheuyap, Vanina
Partner: UNT Libraries

The Effects of Air Pollution on the Intestinal Microbiota: A Novel Approach to Assess How Gut Microbe Interactions with the Environment Affect Human Health

Description: This thesis investigates how air pollution, both natural and anthropogenic, affects changes in the proximal small intestine and ileum microbiota profile, as well as intestinal barrier integrity, histological changes, and inflammation. APO-E KO mice on a high fat diet were randomly selected to be exposed by whole body inhalation to either wood smoke (WS) or mixed vehicular exhaust (MVE), with filtered air (FA) acting as the control. Intestinal integrity and histology were assessed by observing expression of well- known structural components tight junction proteins (TJPs), matrix metallopeptidase-9 (MMP-9), and gel-forming mucin (MUC2), as well known inflammatory related factors: TNF-α, IL-1β, and toll-like receptor (TLR)-4. Bacterial profiling was done using DNA analysis of microbiota within the ileum, utilizing 16S metagenomics sequencing (Illumina miSeq) technique. Overall results of this experiment suggest that air pollution, both anthropogenic and natural, cause a breach in the intestinal barrier with an increase in inflammatory factors and a decrease in beneficial bacteria. This evidence suggests the possibility of air pollution being a potential causative agent of intestinal disease as well as a possible contributing mechanism for induction of systemic inflammation.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Fitch, Megan
Partner: UNT Libraries

Analysis of Students' Knowledge, Perceptions, and Interest in Engineering Post Teacher Participation in a National Science Foundation (NSF) Research Experience for Teachers (RET) Professional Development

Description: This study examined the impact of the National Science Foundation's Research Experience for Teachers (RET) in engineering at University of North Texas on students after their teachers' participation in the program. Students were evaluated in terms of self-efficacy, knowledge of engineering, perceptions of engineering, and interest in engineering. A 22-item Likert pre/post survey was used for analysis, and participants included 589 students from six high schools, one middle school, and one magnet school. Paired surveys were analyzed to determine if there was a statistically significant difference in attitudes and knowledge after teachers implemented lessons from their time at the RET. Surveys were also analyzed to determine if there was a statistically significant difference in student response based on gender or student school type. Results showed no statistically significant difference in the self-efficacy of students, however there was a statistically significant difference in knowledge, perceptions, and interest in engineering. In addition, there was a statistically significant difference between genders on an isolated question, and seven out of the 22 Likert questions showed a statistically significant difference between student school types.
Date: December 2016
Creator: Reeder, Christina
Partner: UNT Libraries

Cytochrome P450 Gene Expression Modulates Anoxia Sensitivity in Caenorhabditis Elegans

Description: With an increasing population suffering from obesity or Diabetes Mellitus (DM), it is more pertinent than ever to understand how physiological changes impact cellular processes. Patients with DM often suffer from obesity, hyperglycemia, altered fatty acids that contribute to vascular dysfunction, and increased risk to ischemia. Caenorhabditis elegans is a model system used to study the conserved insulin signaling pathway, cellular responses in whole organisms and the impact a glucose diet has on oxygen deprivation (anoxia) responses. RNA-sequencing (RNA-Seq) was used to analyze the expression of genes in the anoxia sensitive populations of N2 (wild-type) fed glucose and hyl-2(tm2031), a mutant with altered ceramide metabolism. Comparison of the altered transcripts in the anoxia sensitive populations revealed 199 common transcripts- 192 upregulated and 7 downregulated. One of the gene families that have altered expression in the anoxia sensitive populations encode for Cytochrome P450 (CYP). CYPs are located both in the mitochondria and endoplasmic reticulum (ER), but the CYPs of interest are all predicted to be mainly subcellularly localized to the ER. Here, I determined that knock-down of specific cyp genes, using RNA interference (RNAi), increased anoxia survival in N2 animals fed a standard diet. Anoxia sensitivity of the hyl-2(tm2031) animals was supressed by RNAi of cyp-25A1 or cyp-33C8 genes. These studies provide evidence that the CYP detoxification system impacts oxygen deprivation responses. using hsp-4::GFP animals, a transcriptional reporter for ER unfolded protein response (UPR), I further investigated the impact of cyp knock-down, glucose, and anoxia on ER UPR due to the prediction of CYP-33C8 localization to the ER. Glucose significantly increased ER UPR and cyp knock-down non-significantly increased ER UPR. Measurements of ER UPR due to anoxia were made difficult, but representative images show an increase in ER stress post 9-hour anoxia exposure. This study provides evidence that glucose affects ER ...
Date: August 2016
Creator: Quan, Daniel L
Partner: UNT Libraries

Identification of a Potential Factor Affecting Graduation Rates in STEM for Hispanic Students at the University of North Texas, via Analysis of Nonfiction Science Books in Spanish Language for ELLs in the Dallas ISD Schools

Description: Latinos are the largest minority group in the U.S.; however despite the continuous growth of the Hispanic population, Latinos are severely underrepresented in STEM fields. One of the reasons that might explain why Latinos do not major in STEM is the way they encounter science curriculum in primary school. Students' limited proficiency in English may constrain their science achievement when instruction is delivered exclusively in English. A quantitative analysis with graduation rates in STEM from 2009 to 2014 at the University of North Texas was conducted, finding that there is a significant difference (p<0.05) in the number of bachelor's degrees in STEM between Hispanic, White, African American and other student populations. Interviews with teachers, librarians and publishing companies were performed to describe the limited science literature in Spanish at the Dallas ISD schools. Improving science literacy by teaching according to ELLs' linguistic skills and culture may lead to a better understanding of science curriculum throughout their education, which may translate into higher college graduation rates by Hispanic recipients in STEM.
Date: August 2016
Creator: Garcia Colin, Monica
Partner: UNT Libraries

Influence of a Human Lipodystrophy Gene Homologue on Neutral Lipid Accumulation in Arabidopsis Leaves

Description: CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common leaf specific fatty acids. Leaves of mature cgi-58 plants exhibited a marked increase in absolute triacylglycerol levels, more than 10-fold higher than in wild-type plants. Lipid levels in the oil-storing seeds of cgi-58 loss-of-function plants were unchanged, and unlike mutations in beta-oxidation, the cgi-58 seeds germinated and grew normally, requiring no rescue with sucrose. We conclude that the participation of CGI-58 in neutral lipid homeostasis of nonfat-storing tissues is similar, although not identical, between plant and animal species. This unique insight may have implications for designing a new generation of technologies that enhance the neutral lipid content and composition of corp plants.
Date: August 2016
Creator: James, Christopher Neal
Partner: UNT Libraries

Presence of Wolbachia, A Potential Biocontrol Agent: Screening for Vertebrate Blood Meal Source and West Nile Virus in Mosquitoes in the North Texas Region

Description: West Nile virus (WNV) is a geographically endemic mosquito-borne flavivirus that has spread across the United States infecting birds, mosquitos, humans, horses and other mammals. The wide spread nature of this virus is due to the ability of the mosquito vector to persist in broad, ecological diverse environments across the United States. In this study, mosquito populations in North Texas region were sampled for detection of Wolbachia, blood meal source, and WNV. The ultimate goal of this study was to examine the potential of a biocontrol agent, Wolbachia sp. that colonizes the hindgut of various insects, including mosquitos, as a natural means to interrupt virus transmission from mosquitos to other hosts, including humans. In Australia, Wolbachia sp. from fruit flies (Drosophila melanogaster) have been successfully used to block transmission of a similar pathogenic virus from mosquitos responsible for transmission of Dengue fever. Here, mosquitoes were collected using CDC style Gravid Traps in Denton, Texas, from October 2012 through September 2014. Collected mosquitoes were identified, sexed, and categorized as to the amount of host blood in their alimentary system using a Zeiss Axio Zoom microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY). Culex quinquefaciatus was the dominant blood engorged species collected. Smaller populations of Culex tarsalis and Aedes albopictus, another known vector for WNV were also collected. Mosquito larva were also collected from the UNT water research field station and reared to adults. Cx. tarsalis was the dominant mosquito taken from this habitat. Samples of Cx. quinquefasciatus, Cx. tarsalis and A. albopictus were analyzed for Wolbachia sp. and to identify host blood in the mosquito alimentary system. Total DNA extraction from the pool of mosquito samples was by both commercially available DNA extraction kits (Qiagen, Valencia, CA) and salt extraction technique. Polymerase chain reaction (PCR) was used to amplify and identify Wolbachia ...
Date: August 2016
Creator: Adiji, Olubu Adeoye
Partner: UNT Libraries

Respiratory Responses in the Freshwater Snail (Pomacea Bridgesii) are Differently Affected by Temperature , Body Mass,and Oxygen Avalability

Description: Pomacea bridgesii is a snail species native to tropical and sub-tropical regions, where it usually faces variability in water, temperature and oxygen level. This study of the effect of temperature on mass-specific oxygen consumption (ṀO2) and its relation to body weight shows that the ṀO2 of juvenile snails in normoxia (18-21 kPa) acclimated at temperature of 25°C ranged from 5 to 58 µMol O2/g/h, with a mean of 41.4 ± 18.3 µMol O2/g/h (n=7). Adult snails in normoxia at 25°C show less variation, ranging from 13 to 23 µMol O2/g/h , with a mean of 24.4± 6.1 µMol O2/g/h (n=12). The Q10 value for juvenile snails was higher in the interval 25-30°C (Q 10=5.74) than in the interval 20-25°C (Q10= 0.286). In adult snails, Q10 was higher in the interval 20-25°C (Q10=3.19). ṀO2 of P. bridgesii in relation to body weight showed a negative linear correlation between metabolic rate and body weight with b values between 0.23 and 0.76. Also, both juvenile and adult snails exhibited weak O2 regulation. In general, the different respiratory characteristics between juvenile and adult snails might be related to the differences of individual life history, which caused them to perform differently in face of temperatures change. Additionally, Pomacean snails species originated in tropical habitats where there is a lack of thermal fluctuation. For this reason, Pomacean snails may be less likely to have evolved effective thermal acclimation capabilities.
Date: August 2016
Creator: Frifer, Wenasa Salem
Partner: UNT Libraries

Biodiversity and Genetic Structure of Benthic Macroinvertebrates along an Altitudinal Gradient: A Comparison of the Windhond and Róbalo River Communities on Navarino Island, Chile

Description: Altitudinal gradients in Sub-Antarctic freshwater systems present unique opportunities to study the effect of distinct environmental gradients on benthic macroinvertebrate community composition and dispersal. This study investigates patterns in biodiversity, dispersal and population genetic structure of benthic macroinvertebrate fauna across an altitudinal gradient between two watersheds on Navarino Island in southern Chile. Patterns in diversity, density, evenness and functional feeding groups were not significantly different across the altitudinal gradient in both the Windhond and Róbalo Rivers. Taxa richness in both rivers generally increased from the headwaters of the river to the mouth, and functional feeding group patterns were consistent with the predictions of the River Continuum Concept. Population genetic structure and gene flow was investigated by sampling the mitochondrial cytochrome oxidase I gene in two invertebrate species with different dispersal strategies. Hyalella simplex (Amphipoda) is an obligate aquatic species, and Meridialaris chiloeense (Ephemeroptera) is an aquatic larvae and a terrestrial winged adult. Contrasting patterns of population genetic structure were observed. Results for Hyalella simplex indicate significant differentiation in genetic structure in the Amphipod populations between watersheds and lower genetic diversity in the Róbalo River samples, which may be a result of instream dispersal barriers. Meridialaris chiloeense exhibited weak population structure but higher genetic diversity, which suggests this species is able to disperse widely as a winged adult.
Date: May 2016
Creator: Pulliam, Lauren
Partner: UNT Libraries

The Effects of Neonicotinoid Exposure on Embryonic Development and Organ Mass in Northern Bobwhite Quail

Description: Since their emergence in the early 1990s, neonicotinoid use has increased exponentially to make them the world's most prevalent insecticides. Although there is considerable research concerning the lethality of neonicotinoids, their sub-lethal and developmental effects are still being explored, especially with regards to non-mammalian species. The goal of this research was to investigate the effects of the neonicotinoid imidacloprid on the morphological and physiological development of northern bobwhite quail (Colinus virginianus). Bobwhite eggs (n = 650) were injected with imidacloprid concentrations of 0 (sham), 10, 50, 100 and 150 grams per kilogram of egg mass, which was administered at day 0 (pre-incubation), 3, 6, 9, or 12 of growth. Embryos were dissected on day 19 when they were weighed, staged, and examined for any overt structural deformities. Embryonic heart, liver, lungs and kidneys were also weighed and preserved for future use. Treated embryos exhibited increased frequency of severely deformed beaks and legs, as well as larger hearts and smaller lungs at the higher dosing concentrations. Some impacts are more pronounced in specific dosing periods, implying that there may be critical windows of development when embryos are highly susceptible to neonicotinoid exposure. This investigation suggests that imidacloprid could play a significant role in chick survival and declining quail populations in treated regions of the country.
Date: May 2016
Creator: Gobeli, Amanda
Partner: UNT Libraries

The Effect of Post-exercise Ethanol Consumption on the Acute Hormonal Response to Heavy Resistance Exercise in Women

Description: The purpose of this study was to examine the hormonal response to acute ethanol ingestion following a bout of heavy resistance exercise in women. Eight resistance trained women completed two identical acute heavy resistance exercise tasks (AHRET). From 10-20 minutes post-AHRET, participants consumed either a grain ethanol or a placebo beverage. Blood was collected before (PRE) and immediately after the AHRET (IP) and then every 20 minutes for five hours. Blood collected after beverage ingestion was pooled into 3 batches (phases: 20-40 minutes, 60-120 minutes, and 140-300 minutes post-exercise) and analyzed for serum total testosterone (TT), free testosterone (FT), insulin-like growth factor-I (IGF-I), human growth hormone (GH), cortisol (COR), and estradiol (E2) concentrations. Circulating concentrations of TT were significantly greater at P20-40 than at PRE, P60-120, and P140-300. Circulating concentrations of FT were significantly greater at P20-40 than at all other times. Circulating concentrations of GH were significantly greater at IP than at PRE, P60-120, and P140-300. Circulating concentrations of COR were significantly greater at P20-40 than at all other times. Additionally, COR concentrations at P140-300 were significantly lower than at all other times. Circulating concentrations of IGF-1 were significantly greater at P20-40 than at P60-120 and P140-300. Circulating concentrations of E2 were significantly greater at P20-40 than at all other times. In summary, the present study demonstrated an acute modulation of the neuroendocrine milieu following a heavy resistance exercise bout in women. Ethanol ingestion appeared to have no significant effect on the characteristics of acute hormonal augmentation in TT, FT, GH, COR, IGF-1, or E2.
Date: December 2015
Creator: Budnar, Jr., Ronald G.
Partner: UNT Libraries

A High-fat Meal Alters Post-prandial mRNA Expression of SIRT1, SIRT4, and SIRT6

Description: Sirtuins (SIRT) regulate the transcription of various genes involved in the development of diet-induced obesity and chronic disease; however, it is unknown how they change acutely following a high-fat meal. The purpose of this study was to determine the effect of a high-fat meal (65% kcals/d; 85% fat recommendation), on SIRT1-7 mRNA expression in blood leukocytes at 1, 3, and 5-h post-prandial. Men and women (N=24) reported to the lab following an overnight fast (>12H). Total RNA was isolated and reverse transcribed prior to using a Taqman qPCR technique with 18S rRNA as a normalizer to determine SIRT1-7 mRNA expression. An additional aliquot of serum was used to measure triglycerides. Data was analyzed using a RM ANOVA with P<0.05. Triglycerides (P<0.001; 124%) peaked at 3-h. SIRT 1 (P=0.004; 70%), and SIRT 6 (P=0.017; 53%) decreased expression at 3-h. SIRT4 (P=0.024) peaked at 5H relative to baseline (70%) and 3-h (68%). To our knowledge, this is the first study to report that consumption of a high-fat meal transiently alters SIRT mRNA expression consistent in a pattern that mirrors changes in serum triglycerides. Decrease in expression of SIRT1 and SIRT6 combined with an increased SIRT4 would be consistent with an increase in metabolic disease risk if maintained on a chronic basis.
Date: December 2015
Creator: Best Sampson, Jill Nicole
Partner: UNT Libraries

Phenotypic Morphological Plasticity Induced by Environmental Salt Stress in the Brine Shrimp, Artemia franciscana

Description: Phenotypic plasticity is the ability of an organism to express different phenotypes in response to biotic or abiotic environmental cues. The ability of an organism to make changes during development to adjust to changes in its environment is a key to survival. Sexually reproducing organisms that have short life cycles and that are easy to raise in the laboratory are more conducive for developmental phenotypic plasticity. Considerable research has already been carried out on the brine shrimp, Artemia franciscana, regarding its morphology due to changing salinities. There is, however, little research considering subsequent generations and how there morphology might be affected by parental experiences. This study has examined: 1) the morphological effects of different rearing regimes of different salinity levels, and 2) the epigenetic transgenerational transfer of these morphological traits in A. franciscana. Measurements included rate of growth (as measured by instar), body size, body length, and other morphological traits. A gradual increase to more hyperosmotic conditions during development produced brine shrimp that were larger in size and also more developmentally advanced. Salinity stress experienced by adults had increased the growth rate in the F1 offspring of A. franciscana. Collectively, these data indicate that Artemia franciscana is a tractable model for investigating phenotypic plasticity. These findings have added to the ever-growing field of developmental phenotypic plasticity while also providing more information on the natural history and adaptive abilities of A. franciscana.
Date: December 2015
Creator: Jones, Shaun Gray
Partner: UNT Libraries

The Role of Cysteinyl Leukotriene Receptor 2 in Thrombocyte Aggregation

Description: Cysteinyl leukotriene receptor 2, a G-protein coupled receptor known to be expressed and functional on human platelets. However, it seems that upon ligand activation the cysteinyl leukotriene receptor 2 activates a variety of signaling pathways in multiple cell types among different species. Previously, a former laboratory member Vrinda Kulkarni found cysteinyl leukotriene receptor 2 to be expressed on the surface of adult zebrafish thrombocytes. In this work I studied the characteristics of aggregation in adult zebrafish thrombocytes with the knockdown of cysteinyl leukotriene receptor 2. I used a newly developed knockdown method to study the function of cysteinyl leukotriene receptor 2. Knockdown of the cysteinyl leukotriene was confirmed using RT-PCR results showed p=.001, reduced sell surface level of expression of the cysteinyl leukotriene receptor 2 results showed that p=.002. I found that the knockdown of cysteinyl leukotriene receptor 2 results in prothrombotic thrombocytes by using flow cytometry p=.0001.
Date: December 2015
Creator: Reyna, Julianna
Partner: UNT Libraries

Role of GPR17 in Thrombocyte Aggregation in Adult Zebrafish

Description: GPR17, a uracil nucleotide cysteinyl leukotriene receptor, belongs to the GPCR (G protein coupled receptor) family. It has been shown recently that inhibiting this protein in the nervous system in mice can lead to blockage of oligodendrocyte maturation, which supports myelin repair. Interestingly, our laboratory found GPR17 in thrombocytes. However, we do not know whether it has any function in thrombocyte aggregation or the nature of the ligand. In this paper, we studied the role of GPR17 in hemostasis, which is a fundamental defense mechanism in the event of injury. Using zebrafish as a model system, our laboratory has studied specifically thrombocytes, which play a significant role in hemostasis. The major reasons to use zebrafish as a model system are that their thrombocytes are functionally equivalent to human platelets, the adult fish are amenable to knockdown experiments, and they are readily available in the market. This study was performed by using a piggy back knockdown method where we used a chemical hybrid of control morpholino and an antisense oligonucleotide sequence leads to the degradation the mRNA for GPR17. After knockdown GPR17 in thrombocytes, the percent difference of the thrombocytes aggregation between the control and knockdown blood samples was measured by flow cytometry. We used various thrombocyte agonists to study differences in aggregation between the control and knockdown blood samples. The study showed that knockdown of GPR17 resulted in no significant differences in percent thrombocyte aggregation between control and agonist treated samples except for a slight increase in collagen-treated samples. Thus, it appears that GPR17 has no significant role in hemostasis.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2015
Creator: Bohassan, Maruah Hejey
Partner: UNT Libraries

Effects of Macrophyte Functional Diversity on Taxonomic and Functional Diversity and Stability of Tropical Floodplain Fish Assemblages

Description: Multiple dimensions of biodiversity within and across producer and consumer guilds in the food web affect an ecosystem’s functionality and stability. Tropical and subtropical aquatic ecosystems, which are extremely diverse, have received much less attention than terrestrial ecosystems in regards to the effects of biodiversity on ecosystem functioning. We conducted a field experiment that tested for effects of macrophyte functional diversity on diversity and stability of associated fish assemblages in floodplain lakes of the Upper Paraná River floodplain, Brazil. Three levels of macrophyte functional diversity were maintained through time in five floodplain lakes and response variables included various components of fish taxonomic and functional diversity and stability. Components of functional diversity of fish assemblages were quantified using a suite of ecomorphological traits that relate to foraging and habitat use. Response variables primarily distinguished macrophyte treatments from the control. Macrophyte treatments had, on average, double the number of species and total abundance than the control treatment, but only limited effects on stability. The high diversity treatment was essentially nested within the low diversity for assemblage structure and had similar or even slightly lower levels of species richness and abundance in most cases. Gymnotiformes and young-of-year were diverse and relatively abundant in macrophyte treatments contributing to the large differences in diversity between macrophyte and control treatments. Higher fish diversity in structured habitats compared to more homogenous habitats is likely associated with increased ecomorphological diversity to exploit heterogeneous microhabitats and resources provided by the macrophytes.
Date: August 2015
Creator: Treviño, Jessica Marie
Partner: UNT Libraries

Cytotoxicity and Functional Toxicity of Mefloquine and the Search for Protective Compounds

Description: Mefloquine hydrochloride is an antimalarial agent that has been used for the past 40 years. Numerous reports of neurological side effects have recently led the FDA to issue a strong warning regarding long-term neurological effects. This warning lead to the U.S. Army’s Special Forces and other components to discontinue its use in July of 2013. Despite reported adverse side effects, mefloquine remains in circulation and is recommended to travelers going to specific Asian countries. Mefloquine has been used as a treatment for those already infected with the malaria parasite (blood concentrations ranging from 2.1 to 23 µM), and as prophylaxis (blood concentrations averaging 3.8 µM) (Dow 2003). The purpose of this study was to quantify Mefloquine’s toxicity using spontaneously active nerve cell networks growing on microelectrode arrays in vitro and to identify compounds that alleviate or reduce toxic effects. The current literature on mefloquine toxicity is lacking electrophysiological data. These data will contribute to research on the mechanism of adverse side effects associated with mefloquine use. Sequential titration experiments were performed by adding increasing concentrations of mefloquine solution to cultured neurons. Network responses were quantified and reversibility was examined. In each network, activity decreases were normalized as a percent of reference activity yielding a mean IC50 value of 5.97 ± 0.44 (SD) µM (n=6). After total activity loss, no activity was recovered with two successive medium changes. To test for network response desensitization resulting from sequential applications over 5-6 hr periods, one-point titrations at varying concentrations were conducted with fresh networks. These experiments yielded a single concentration response curve with an IC50 value of 2.97 µM. This represents a statistically significant shift (p < 0.0001) to lower concentrations of mefloquine, demonstrating that sequential applications result in network desensitization. After mefloquine exposures, cells were evaluated for irreversible cytotoxic damage. Over a ...
Date: May 2015
Creator: Holmes, Katelyn
Partner: UNT Libraries