UNT Theses and Dissertations - Browse

ABOUT BROWSE FEED

Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex

Description: The reaction of 2-[(diphenylphosphino)methyl]-6-methylpyridine (PN) with Os3(CO)12-n(MeCN)n [where n = 0 (1), 1 (2), 2 (3)] has been investigated. Os3(CO)12 reacts with PN in the presence of Me3NO to afford the clusters Os3(CO)11(1-PN) (4) and 1,2-Os3(CO)10(1-PN)2 (5). X-ray diffraction analyses confirm the equatorial coordination of the phosphine(s) in 4 and 5, with the two phosphines in the latter cluster exhibiting a 1,2-trans orientation about the Os-Os vector that contains the two ligands. Treatment of the MeCN-substituted cluster Os3(CO)11(MeCN) and PN (1:1 ratio) in CH2Cl2 gives clusters 4 and 5, in addition to HOs3(η1-Cl)(CO)10(1-PN) (6) as a result of competitive activation of the reaction solvent. Cluster 6 contains 48e- and the diffraction structure reveals the presence of axial chloride and equatorial phosphine ligands which are located on adjacent osmium atoms. The bridging hydride ligand in 6 spans the Cl,P-substituted Os-Os vector. The reaction of Os3(CO)10(MeCN)2 with PN furnishes 5, 6, and 1,1-Os3(CO)10(2-PN) (7) in yields that are dependent on the reagent stoichiometry and reaction solvent. The solid-state structure of 7 confirms the chelation of the PN ligand to a single osmium atom via the pyridine and phosphine moieties at axial and equatorial sites, respectively. The bonding in 7 relative to other possible stereoisomers has been explored by DFT calculations, and the diffraction structure is computed as the thermodynamically most stable form of this cluster. Cluster 4 is photosensitive and CO loss gives 7, in addition to the formation of the dihydride H2Os3(CO)8[µ-CH(NC5H3)CH2PPh2] (8), whose origin derives from the double metalation of the C-6 methyl group of the PN ligand in 7. Photolysis of 7 yields 8 without detectable observation of the expected intermediate hydride HOs3(CO)9[µ-CH2(NC5H3)CH2PPh2]. The PN ligand in 7 undergoes P-C bond activation in toluene at 110 °C to afford the 50e cluster Os3(CO)9(µ-C6H4)(µ-PPh), which contains face-capping benzyne and phosphinidene ...
Date: August 2013
Creator: Lin, Chen-Hao
Partner: UNT Libraries

A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices

Description: The characterization of 2,3,6,7,10,11-hexabromotriphenylene, Br6TP, is presented toward its potential use as an n-type organic semiconductor and metal-free room temperature phosphor. The crystal structure shows both anisotropic two-dimensional BrBr interactions and inter-layer ?-stacking interactions. Photophysical characteristics were evaluated using solid-state photoluminescence and diffuse reflectance spectroscopies, revealing significantly red-shifted excitations in the visible region for the yellow solid material (compared to ultraviolet absorption bands for the colorless dilute solutions). Correlation of spectral, electrochemical, and computational data suggest the presence of an n-type semiconducting behavior due to the electron-poor aromatic ring. The material shows excellent thermal stability as demonstrated by thermogravimetric analysis and infrared spectra of a thin film deposited by thermal evaporation. The potential for Br6TP and its analogues toward use in several types of photonic and electronic devices is discussed.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2012
Creator: Halbert, Jason Paul
Partner: UNT Libraries