Search Results

Experimental and Numerical Investigation of a Novel Cold-Formed Steel Long Span Truss
This thesis describes the experimental and numerical investigation of a novel cold-formed steel 48ft and 54ft long span truss. The truss we designed was to be used as the roofs of large buildings, such as warehouses, hangars, sports arenas. The investigation includes both experimental and numerical testing, the experimental testing of the truss under uniform loads (increasing loads) to determine its deflection and load carrying capacity. The numerical test included developing a finite element model of the truss in SolidWorks and using a finite element model of the truss in ABAQUS to simulate the experimental tests. The findings of this study can be used to improve the design of cold-formed steel long span trusses. The study also provides valuable information for future studies on the modeling of trusses with different cold-formed steel members and the behavior of trusses under load.
3D Printed Self-Activated Carbon Electrodes for Supercapacitor Applications
This study investigated a new approach to achieving high energy density supercapacitors (SCs) by using high surface area self-activated carbon from waste coffee grounds (WCGs) and modifying 3D printed electrodes' porous structure by varying infill density. The derived activated carbons' surface area, pore size, and pore volume were controlled by thermally treating the WCGs at different temperatures (1000˚C, 1100˚C, and 1200˚C) and post-treating with HCL to remove water-soluble ashes and contaminants that block activated carbon pores. Surface area characterization revealed that the carbon activated at 1000˚C had the highest surface of 1173.48 m2 g-1, and with the addition of HCL, the surface area increased to 1209.35 m2 g-1. This activated carbon was used for fabricating the electrodes based on the surface area and having both micropores and macropores, which are beneficial for charge storage. Direct ink writing (DIW) method was utilized for 3D printing SC electrodes and changing the electrode structure by increasing the infill densities at 30%, 50%, and 100%. Upon increasing the infill densities, the electrodes' mass increased linearly, porosity decreased, and the total surface area increased for the 30% and 50% infill electrodes but decreased for the 100% infill electrode. Cyclic voltammetry (CV) test on the assembled SC showed the highest specific capacitance and energy density of 5.81 F g-1 and 806.93 mWh kg-1 at 10 mV s-1, respectively, for the electrode printed at 50% infill density.
Investigation of Interfacial Property with Imperfection: A Machine Learning Approach
Interfacial mechanical properties of adhesive joints are very crucial in board applications, including composites, multilayer structures, and biomedical devices. Establishing traction-separation (T-S) relations for interfacial adhesion can evaluate mechanical and structural reliability, robustness, and failure criteria. Due to the short range of interfacial adhesion such as micro to nanoscale, accurate measurements of T-S relations remain challenging. The advent of machine learning (ML) became a promising tool to predict materials behaviors and establish data-driven mechanical models. In this study, we integrated a state-of-the-art ML method, finite element analysis (FEA), and standard experiments to develop data-driven models for characterizing the interfacial mechanical properties precisely. Macroscale force-displacement curves are derived from FEA with incorporation of double cantilever beam tests to generate the dataset for ML model. The eXtreme Gradient Boosting (XGBoost) multi-output regressions and classifier models are used to determine T-S relations with R2 score of 98.8% and locate imperfections at the interface with accuracy of around 80.8%. The outcome of the XGBoost models demonstrated accurate predictions and fast calculation speed, outperforming several other ML methods. Using 3D printed double cantilever beam specimens, the performance of the ML models is validated experimentally for different materials. Furthermore, a XGBoost model-based package is designed to obtain different adhesive materials T-S relations without creating a database or training a model.
Rapid, Approximate Multi-Axis Vibration Testing
Sequential single-axis vibration testing strategies often produce over-testing when qualifying system hardware. Multi-axis excitation techniques can simulate realistic service environments, but the hardware and testing strategies needed to do so tend to be costly and complex. Test engineers instead must execute sequential tests on single-axis shaker tables to excite each degree of freedom, which the previous two decades of vibration testing literature have shown to cause extensive over-testing when considering cross-axis responses in assessing the severity of the applied test environments. Traditional assessments assume that the test article responds only in the axis of excitation, but often significant response occurs in the off-axes as well. This paper proposes a method to address the over-testing problem by approximating a simultaneous multi-axis test using readily-available, single-axis shaker tables. By optimizing the angle of excitation and the boundary condition through dynamic test fixture design, the test article can be tested using a Single-Input, Multiple-Output (SIMO) test in a way that approximates a Multiple-Input, Multiple-Output (MIMO) test. This paper shows the proposed method in simulation with a 2D finite element box assembly with removable component (BARC) model attached to springs with variable stiffness. The results include quantified test quality assessment metrics with comparison to standard sequential testing. The proposed method enables access to rapid, approximate, multi-axis testing using existing hardware, thereby reducing the over-conservatism of sequential single-axis tests and requisite over-design of systems.
Suppression of Higher Acoustic Harmonics by Application of Solid-Solid Periodic Layered Structure in Nonlinear Ultrasonics Nondestructive Evaluation Field
Nondestructive testing (NDT) using ultrasound band 1-5 MHz, has been widely used for the early-stage detection of structural failure; however, it fails to detectf material degradation, fatigue, and microcracks. NDT with nonlinear ultrasound (NLU) can detect a microscopic discontinuity or imperfection that may be a source of the second harmonic in the reflected signal. In this research, we focus on creating a metamaterial band filter that filters out nonlinearities induced by the instrument itself. A 1D elastic superlattice (SL) acoustic filter is designed with a bandgap in its frequency spectrum that covers the frequency range of second harmonic. The SL is made of periodically alternating Cu and Sn-Pb solder layers. We conducted analytical and numerical calculations to obtain the appropriate thickness of each layer. The metamaterial in this study has the pass band for the fundamental frequency of 5 MHz and the first stop band centered near the frequency of 10 MHz; 5 MHz was chosen because the second harmonic at 10 MHz can detect 200μm micro-scale damage. Experiments with aluminum as the reference specimen and with SL filter were conducted. A function-generator generates 3 pulses sine signal, within the frequency range from 2.5 MHz to 20MHz. Spectral analysis of the signal through the SL filter shows 100 times voltage suppression of the second harmonic as compared to the signal transmitted through the Al specimen. By filtering out the device's inherent nonlinearity with the SL ultrasonic filter, one can detect microcracks, fatigue and material degradation with much higher accuracy.
Process Planning for Hybrid Manufacturing with Directed Energy Deposition and Machining Processing
This thesis details the creation and application of a generalized process plan for the hybrid manufacturing of AISI 316L stainless steel, using direct energy deposition (DED) and ball-nose end-mill machining, that includes the inspection and measurement of objects created by that hybrid manufacturing process plan. The proposed process plan progresses through the selection of substrate thickness, single-track, multi-track, and multi-layer depositions, then on to machining processing. A manufacturers' recommended set and range of DED parameters were used to create a designed experiment that aided in the analysis of objects created in each of the DED process planning steps; those objects were then machined in the same enclosure using a set of machining parameters screened from industry recommendations for ball-nose milling of stainless steel, after which measurements were taken for surface roughness, some material characteristics, and for tool deterioration. The results, analyses, and discussions collected herein show that the proposed process plan can provide models for geometrical outputs for each step in the plan, some improvements in substrate stability, surface roughness, tool deterioration, and material porosity due to voids. Current research in hybrid manufacturing does not show generalized process planning influences. The process plan as demonstrated by the work in this thesis will help operators, designers, and researchers in the future by defining a generalized workflow that can be applied to other materials used in hybrid manufacturing.
Artificial Neural Network Based Thermal Conductivity Prediction of Propylene Glycol Solutions with Real Time Heat Propagation Approach
Machine learning is fast growing field as it can be applied to solve a large amount of problems. One large subsection of machine learning are artificial neural networks (ANN), these work on pattern recognition and can be trained with data sets of known solutions. The objective of this thesis is to discuss the creation of an ANN capable of classifying differences in propylene glycol concentrations, up to 10%. Utilizing a micro pipette thermal sensor (MTS) it is possible to measure the heat propagation of a liquid from a laser pulse. The ANN can then be trained beforehand with simulated data and be tested in real time with temperature data from the MTS. This method could be applied to find the thermal conductivity of unknown fluids and biological samples, such as cells and tissues.
Development of an Enclosed Evaporation Chamber Utilizing a Fresnel Lens Solar Concentrator
This thesis project investigates the configuration of an enclosed evaporation chamber with the intention of converting seawater into potable freshwater. The evaporation chamber's sole heat source is provided by a Fresnel lens, located above the chamber, which concentrates sunlight onto a 3-inch diameter focal plate built into the core of the chamber. The design of the evaporation chamber is modeled after a solar still and is coupled with a heat exchanger to boost efficiency of the system. The chamber was designed with the objectives of being portable, lightweight, low cost, corrosion resistant, interchangeable, and size convenient with the goal of producing 1 Liter of freshwater per hour of operation. The evaporation chamber consists of two primary components, a core and an attached arrangement of fins, all of which are heated via the Fresnel lens. A consistent intake of 2 grams/second of saltwater enters from the top of the chamber and is then gravity fed across the fins. Fin orientation has been designed to inhibit the flow rate of water within the chamber, maximizing the surface area of contact with the heated fins. The evaporation chamber was modeled through SOLIDWORKS and underwent a physical optimization study to reduce material usage while maximizing potential for heat transfer and minimizing fluid flow rate. A symmetric profile of one quarter of the chamber was then simulated in COMSOL Multiphysics. Concentrated solar heat flux through a Fresnel lens was applied to the receiver on the top of the core. The simulation was split into a preheating and an evaporation phase. A profile approximation for the fluid flow was modeled by the CFD module. Following computer simulations, the evaporation chamber was constructed and tested.
Heat Transfer Analysis of Bio-Printed Tissue Mimicking Material Mixed with Silver Nanoparticles
Novel tissue mimicking materials have been developed for cancer treatment research. In the present research work, the tissue mimicking material is printed using 3D bioprinting technology. The nanoparticles are homogeneously mixed with tissue mimicking materials to enhance the heating capacity. The thermal conductivity of tissue mimicking materials is measured using a micropipette thermal sensor (MTS). Further, the optimal value is identified based on optimization technique and incorporated into a theoretical model to predict the surface temperature of microsphere. The heat conduction governing equation with Lambert law is numerically solved using COMSOL Multiphysics software. To validate the present simulation results, the experiments are conducted using a continuous laser system.
Microgravity Vortex Phase Separator for Liquid Amine CO2 Removal System
The present study investigates vortex phase separator (VPS) technology as a new approach for a liquid amine CO2 removal system. Experimental results obtained using a 99.99% pure CO2 stream and liquid amine with varying concentrations demonstrate the VPS' ability to decrease CO2 volume at its gas outlet. Operating parameters such as CO2 flow rate, relative humidity (RH), and temperature were systematically varied during experimental procedure, as well as working fluid temperature, volume, and flow rate. The subscale design for a VPS with a 3" inner diameter, 3.5" outer diameter, and 3.63" height removed a maximum of 84% of CO2 from a CO2 stream at 3.7 SCFH flow rate, 14°C temperature, and 82% RH, using 100 mL of 100% amine circulated at 1.52 LPM flow rate. The designed VPS also showed to be effective in removing relative humidity of the CO2 stream by up to 26% for the stated parameters. Regeneration of liquid amine in the VPS system is also proposed to allow for continuous CO2 removal. The results obtained in this work characterize the VPS system for CO2 removal in terms of various operating parameters for the gas (CO2) and liquid (liquid amine) phases, as well as provide initial insights into how a VPS sized for stability and applied to CO2 removal performs. This work demonstrates VPS technology as an effective, alternative CO2 removal technology that could be scaled and used to support human exploration of space.
CFD Study of Ship Hydrodynamics in Calm Water with Shear Current and in Designed Wave Trails
Although the capability of computational fluid dynamics (CFD) in modeling ship hydrodynamics is well explored in many studies, they still have two main limitations. First, those studies ignore the effect of non-uniform shear current which exists in realistic situation. Second, the focus of most studies was laid more on the seakeeping/maneuvering performance and less attention was paid to survivability of ships due to extreme ship response events in waves, which are considered rare events but influential. In this thesis, we explore the capability of CFD in those two areas. In the first part of the thesis, the hydrodynamic performance of KCS in the presence of a non-uniform shear current is investigated for the first time using high-fidelity CFD simulations. Various shear current conditions with different directions were considered and results were compared with the ones with no shear current. The second part of the thesis focuses on study of rare events of ship responses by development of extreme response conditioning techniques to design the wave trail. Two conditioned techniques based on Gaussian and non-Gaussian processes are considered.
Gradient-Index Metamaterial Infrared Detector for Enhanced Photo-Response and Image Quality
An enhanced thermal imaging concept made possible through the development of a gradient-indexed metamaterial infrared detector that offers broadband transmission and reflection in THz waves. This thesis proposes a proof of feasibility for a metamaterial infrared detector containing an anti-reflective coating with various geometrically varying periodic metasurfaces, a gradient-indexed dielectric multilayer for near-perfect longpass filtering, and a gradient index of refraction (GRIN) metalens for enhanced focal plane thermal imaging. 2D Rigorous Coupled-Wave Analysis (RCWA) is used for understanding the photonic gratings performance based on material selection and varying geometric structure. Finite Difference Time Domain (FDTD) is used to characterize performance for a diffractive metalens by optimizing the radius and arrangement of cylindrical nanorods to create a desired phase profile that can achieve a desired focal distance for projections on a detector for near- to far-infrared thermal imaging. Through combining a micromachined anti-reflective coating, a near-perfect longpass filter, and metamaterial GRIN metalens, infrared/THz focal plane thermal imaging can obtain faster photo-response and image quality at targeted wavelengths, which allows for scientific advancements in electro-optical devices for the Department of Defense, aerospace, and biochemical detection applications.
Impact of Processing Parameters and Forces on Channels Created by Friction Stir Bobbin Tools
In this thesis, friction stir channeling (FSC) and its process parameters influence on geometry, surface quality and productivity are explored. The probe of the friction stir processing (FSP) tool used to perform these tests was a modified submerged bobbin tool made of MP 159 Co-Ni alloy. The body was made from H13 tool steel. To find the optimal channel conditions for a targeted range of process parameters, multiple 6061 aluminum samples were prepared with a U shape guide to test the effects of different spindle speeds and feed rates. Using a gantry-type computer numerical control (CNC) friction stir welding (FSW) machine, the aluminum coupons were subjected to calibration experiments, force control tests, and an increased production rate to test these effects. It was found through experimentation that the programmed feed rates, spindle speeds and forces produced by the machine had an impact on the channel geometry. It was determined from the force-controlled setup that 8.46 mm/s at 750 RPM was the best combination of results for the four conditions tested on a CNC friction stir processing-machine. It was then tested at 10.58 mm/s at 800 RPM, which had comparable results with the best combination of input parameters from the force-controlled runs which demonstrates the utility of the process in high production settings. Finally, a proof-of-concept experiment was performed on a robotic arm outfitted with a FSW holder, showing acceptable results. This is a validation of its future implementation in the manufacturing of large parts for lightweight, aerospace, and automotive applications.
Optimization of Silica Nanocomposite Membranes for Air Dehumidification
This thesis is focused on understanding the correct method to simulate atomistic models to calculate coefficient of diffusion of water through the membrane. It also aims to fix the method previously used in molecular modelling in which the simulation results did not match the experimental results. These membranes will be used in air dehumidification systems. The four types of membranes namely, polyurethane, polyurethane with silica nano particles, polyurethane with silica nano particles and amine surface modifier, and polyurethane with silica nano particles and aniline surface modifier. These membranes were also simulated to understand the effects of temperatures and pressure using molecular dynamics. The software packages used are MAPS 4.3, Avogadro, EMC, OVITO, and LAMMPS. MAPS, Avogadro and EMC were used to model the membrane at an atomistic level while LAMMPS is used to simulate the model generated. OVITO is used to analyze the simulation visually. The movement of water vapor molecules were tracked through the membrane in the simulation and diffusion coefficient was calculated using Mean square displacement equation. To create a realistic model, silica was dispersed in the Polyurethane matrix, simulated under standard atmospheric conditions. These results will help in further optimizing the membrane for air dehumidification. This will be an energy efficient, and environment friendly way of dehumidification compared to the traditional heat pump type.
3D Printing of Zinc Anode for Zinc Ion Batteries
Recently, 3D printing has received increasing attention for the fabrication and assembly of electrodes for batteries due to the freedom of creating structures in any shape or size, porosity, flexibility, stretchability, and chemistry. Particularly, zinc ion batteries (ZIBs) are favored due to high safety, cheap materials cost, and high volumetric capacity (5,849 mAh/cm3), however, rapid evaporation of Zn due to low melting temperature has limited its 3D printability via conventional laser-based additive manufacturing technique. Here, we develop a printable ink for the fabrication of flexible and 3D printed Zn anode with varied surface areas using the direct ink writing (DIW) method. Our 3D printed porous and high surface area Zn anode structures effectively suppressed the dendrite growth while providing high Zn ion diffusion towards the cathode to significantly enhance the performance of ZIB. By varying filament distancing and path, we 3D printed zinc anode structures with different active surface areas, surface area to volume ratio, porosity, flexible and multiple layer structures that can be incorporated on any device. Carbon in the composite improved conductivity, and mechanical stability of 3D printed zinc anode. Our 3D printed composite anodes allowed flexible designing of batteries surpassing conventional battery designs such as coin cells or pouch cells and can be used to design printed energy storage systems.
Aerodynamic Optimization of a 2D Airfoil for Rotary-Wing Aircraft at Mars Atmospheric Conditions
The interest toward Mars exploration has been considerably increasing due to also the successful deployment of the Perseverance rover and the continuous tests developed by SpaceX's launch vehicle, Starship. While the Mars 2020 mission is currently in progress, the first controlled flight on another planet have been proven in April 2021 with the vertical take-off and landing of the Ingenuity rotorcraft on Mars. In addition, the rotorcraft Dragonfly is expected to achieve the same endeavor in Titan, the largest moon of Saturn, by 2036. Continuous efforts have been oriented toward the development of new technologies and aircraft configurations to improve the performance of current proposed designs to achieve powered flight in different planetary bodies. This thesis work is a preliminary study to develop a comprehensive analysis over the generation of optimum airfoil geometries to achieve vertical flight in environments where low Reynolds numbers and Mach number equal to 0.2 and 0.5.
Design, Fabrication and Testing of a Novel Dual-Axis Automatic Solar Tracker System Using a Fresnel-Lens Solar Concentrator
This thesis project investigates, analyzes, designs, simulates, constructs and tests a dual-axis solar tracker system to track the sun and concentrates the heat of the sunlight, using a Fresnel lens, into a small area, which is above of an evaporator, to increase the temperature of the seawater to convert it into freshwater. The dual-axis solar tracker was designed with the main objectives that the structure was portable, dismountable, lightweight, low cost, corrosion resistant, wires inside pipes, accurate, small size, follow the sun automatically, off-grid (electrical), use green energy (solar powered), and has an empty area right below of the lens. First, a 500 mm diameter flat Fresnel lens was selected and simulated based on an algorithmic method achieved by a previous PhD student at UNT using MATLAB®, to give the optimization lens dimensions. The lens profile was drawn with AutoCAD®, then output profile lens was simulated in COMSOL Multiphysics®. The objective was to provide the high efficiency, optimum and high precision of the focal rays and heat to the receiver of the evaporator. A novel dual-axis solar tracker system was then designed that is portable, dismountable, lightweight and corrosion resistant. The solar tracker tracks the sun in two axis of rotation automatically during the day time, maximizing the angles of inclination on each axis. After testing computer simulations, the dual-axis solar tracker system was constructed and tested. Last, a detailed cost analysis was performed of the entire project. The outcome of this work can be applied for desalination seawater purposes or other any Fresnel lens application that require a focal high temperature directed by dual-axis solar tracker system.
A Novel Thermal Regenerative Electrochemical System for Energy Recovery from Waste Heat
Waste-heat-to-power (WHP) recovers electrical power from exhaust heat emitted by industrial and commercial facilities. Waste heat is available in enormous quantities. The U.S. Department of Energy estimates 5-13 quadrillion BTUs/yr with a technical potential of 14.6 GW are available and could be utilized to generate power by converting the heat into electricity. The research proposed here will define a system that can economically recover energy from waste heat through a thermal regenerative electrochemical system. The primary motivation came from a patent and the research sponsored by the National Renewable Energy Laboratory (NREL). The proposed system improves on this patent in four major ways: by using air/oxygen, rather than hydrogen; by eliminating the cross diffusion of counter ions and using a dual membrane cell design; and by using high concentrations of electrolytes that have boiling points below water. Therefore, this system also works at difficult-to-recover low temperatures. Electrochemical power is estimated at 0.2W/cm2, and for a 4.2 M solution at 1 L/s, the power of a 100 kW system is 425 kW. Distillation energy costs are simulated and found to be 504 kJ/s for a 1 kg/s feed stream. The conversion efficiency is then calculated at 84%. The Carnot efficiency for a conservative 50% conversion efficiency is compared to the ideal Carnot efficiency. Preliminary work suggests an LCOE of 0.6¢/kWh. Industrial energy efficiency could be boosted by up to 10%. Potential markets include power stations, industrial plants, facilities at institutions like universities, geothermal conversion plants, and even thermal energy storage.
Experimental Investigation on Efficiency of Fresnel Lenses with Different Manufacturing Methods
Non-imaging Fresnel lenses have been playing an important role in improving the efficiency of the solar energy systems. Many researchers and scientists have devoted their research to optimize the design of the Fresnel lenses. Before it can contribute to energy efficiency increase, a Fresnel lens with optimized design will first need to be fabricated with the most cost-effective method as well as the best quality fabrication as possible. If targeted in a commercial market, feasibility of mass production with a minimum fabrication time would also be a consideration. To bring the design optimization of a Fresnel lens from a conceptual theory to a real-life increase in energy efficiency, the lens needs to be fabricated, tested, compared, and analyzed. This research thesis is intended to explore the performance of the lenses with optimized design through experimental investigations. The design optimization was achieved by a previous PhD student at UNT. A total of six lenses fabricated with four different methods along with two purchased lenses were tested with two different approaches. Multiple testing routes were conducted within a 10-month period to observe the effects of material decomposition and degradation on the lens performance. The resulting experimental data has provided a solid base for analyzing the performance of the lenses, in particular, the energy conversion efficiency increase of the solar cell by using each lens. The potential cause of the performance variation can be extracted from the comparison and evaluation.
Heat Transfer Analysis of a Small Thermochemical Reactor for Hydrogen Production from Ammonia
Several types of research are ongoing throughout the world, to discover economical and reliable techniques to create hydrogen, and propagate the vision of a hydrogen economy. This research examines a COMSOL Multiphysics 5.4 heat transfer model for a hydrogen production system consisting of a retort with two different heat sources, namely a heat tape and an infrared (IR) lamp. The main objective was to compare the two heat sources and find out which one offers a better technique for producing hydrogen by raising the internal center core temperature of the retort from ambient to the highest temperature, preferably 700℃, within the shortest time possible and using less power consumption in attaining the targeted temperature. Through this study, it was established that the IR lamp could potentially help with energy savings by using just 4 kWh to reach the targeted temperature within an hour.
Passive Control of Fiber Orientation in Direct Ink Writing 3D Printing
Several active methods, which requires external control systems and moving parts, have been developed to control the fiber orientation during 3D printing. Active mechanisms like rotating nozzle, impeller, and magnetic field have been integrated to realize complex internal fiber structures. In this study, instead of using active methods, I investigate a passive method for controlling the fiber orientation without any moving parts or additional mechatronics added in the printing process. Composites of polydimethylsiloxane (PDMS) and glass fibers (GF) are 3D printed. Channels, such as helicoid, are designed and integrated to guide the ink flow and passively result in different pre-alignment of fibers before the ink flow into narrow nozzle space. While passing through the designed channels, the fibers orient due to the shear between channel walls and the ink. The effect of helicoids with different pitch sizes are investigated via mechanical experiments, microstructural analysis, and numerical simulations. The results show that both surface to volume ratio and helix angle of the channel affect pre-alignment of fiber orientation at the entry of nozzle. The internal fiber structures lead to enhanced and tunable mechanical properties of printed composites. Pitch size 7-9 mm (helix angle of 7.92- 10.15o) is found to be optimal for the 3D printed PDMS-GF composites. Stiffness and strength can be tuned up to 77.6% and 47.8%, respectively, compared with the case without helicoid channel. Channels of parallel holes, parallel holes with taper end and gradually changing pitch helicoids are experimentally tested, showing further enhancement in mechanical properties.
Radial and Axial Designs for Magnetic Absorbent Collector in Water
The use of collection systems for magnetic sorbents such as Magnetic Activated Carbon are discussed in order to gauge their efficacy in marine environments. Two collectors were built and tested, one which utilized a radial orientation of magnets and another with axially placed magnets. The two systems underwent a series of test with differing linear velocities and angular velocities. From the results, the axial system outperformed its radial counterpart, being most effective with a relatively high concentration of discs placed in series. The medium concentration, however, proved increasingly effective with higher velocities, meaning an optimization concentration exists for this design. The radial system was tested with high and low concentrations of small and large magnets, respectively. The larger magnets, although providing less concentration points in the alternating array, proved more effective for the collection of MAC. From these tests several new innovations were suggested, including belt tensioners, add on mechanisms, and a hybridized design in order to fully optimize the collection of MAC.
Refrigeration Insulation Using Phase Change Material Incorporated Polyurethane Foam for Energy Savings
Incorporating insulation material with phase change materials (PCMs) could help enhance the insulation capability for a refrigerator system. The phase change material can absorb or release large amount of latent heat of fusion depending on surrounding temperatures for efficient thermal management. This research focuses on how incorporating PCM to the conventional PU foam insulation affects the inside temperatures of the refrigerator system and in-turn helps in conserving energy by reducing the compressor run time. It was found that only 0.25-inch-thick PCM layer in insulation can certainly benefit the refrigerators by reducing the amount of electricity consumption and thus increasing the total energy savings through the numerical study results via COMSOL Multiphysics in this study. This work aims to investigate a PCM-incorporated insulation material to accomplish the enhancement of thermal insulation performance for refrigerators.
Denim Fiberboard Fabricated from MUF and pMDI Hybrid Resin System
In this study, a series of denim fiberboards are fabricated using two different resins, malamine urea formaldehyde (MUF) and polymeric methylene diphenyl diisocyanate (pMDI). Two experimental design factors (1) adhesive content and (2) MUF-pMDI weight ratio, were studied. All the denim fiberboard samples were fabricated following the same resin blending, cold-press and hot-press procedures. The physical and mechanical tests were conducted on the fiberboard following the procedures described in ASTM D1037 to obtain such as modulus of elasticity (MOE), modulus of rupture (MOR), internal bond (IB), thickness swell (TS), and water absorption (WA). The results indicated that the MOE was significantly affected by both factors. IB was affected significantly by weight ratio of different glue types, with 17 wt% more MDI resin portion in the core layer of the denim boards, the IB for total adhesive content 15% fiberboard was enhanced by 306%, while for total adhesive content 25% fiberboard, enhanced by 205%. TS and WA, with higher adhesive content used in denim boards' fabrication, and more pMDI portion in the core layer of the boards, the boards' TS and WA was reduced by up to 64.2% and 78.8%, respectively.
Increasing Effective Thermal Resistance of Building Envelope's Insulation Using Polyurethane Foam Incorporated with Phase Change Material
Incorporating insulation material with phase change materials (PCMs) could help enhance the insulation capability for further building energy savings by reducing the HVAC loadings. During the phase change process between the solid and liquid states, heat is being absorbed or released by PCMs depending on the surrounding temperature. This research explores the benefits of a polyurethane (PU)-PCM composite insulation material through infiltrating paraffin wax as PCM into PU open cell foam. The new PU-PCM composite provides extra shielding from the exterior hot temperatures for buildings. Through this study, it was demonstrated that PU-PCM composite insulation could potentially help building energy savings through reducing the loads on the HVAC systems based on the building energy modeling using EnergyPlus. The Zero Energy Lab (ZØE) at the University of North Texas was modeled and studied in the EnergyPlus. It is a detached building with all wall facades exposed to the ambient. It was determined that the new PU-PCM insulation material could provide 14% total energy saving per year and reduce the electricity use due to cooling only by around 30%.
Membrane-Based Energy Recovery Ventilator Coupled with Thermal Energy Storage Using Phase Change Material for Efficient Building Energy Savings
This research work is focused on a conceptual combination of membrane-based energy recovery ventilator (ERV) and phase change material (PCM) to provide energy savings in building heating, ventilation & air-conditioning (HVAC) systems. An ERV can recover thermal energy and moisture between the outside fresh air (OFA) entering into the building and the exhaust air (EA) leaving from the building thus reducing the energy consumption of the HVAC system for cooling and heating the spaces inside the building. The membranes were stacked parallel to each other forming adjacent channels in a counter-flow arrangement for OFA and EA streams. Heat and moisture is diffused through the membrane core. Flat-plate encapsulated PCM is arranged in OFA duct upstream/downstream of the ERV thereby allowing for further reduction in temperature by virtue of free cooling. Paraffin-based PCMs with a melting point of 24°C and 31°C is used in two different configurations where the PCM is added either before or after the ERV. Computational fluid dynamics (CFD), and heat and mass transfer modeling is employed using COMSOL Multiphysics v5.3 to perform the heat and mass transfer analysis for the membrane-based ERV and flat-plate PCMs. An 8-story office building was considered to perform building energy simulation using eQUEST v3.65 from Department of Energy (DOE). Based on the heat and mass transfer analysis, it is found that the sensible effectiveness (heat recovery) stood in the range of 65%-97% while the latent effectiveness (moisture recovery) stood at 55%-80%. Also, the highest annual energy savings achieved were 72,700 kWh in electricity consumption and 358.45 MBtu in gas consumption.
Microcantilever Based Viscosity Measurement as it Applies to Oscillation Amplitude Response
The goal of this research is to measure viscosity via the analysis of amplitude response of a piezo driven vibrating cantilevers partially immersed in a viscous medium. As a driving frequency is applied to a piezoceramic material, the external forces acting on the system will affect its maximum amplitude. This thesis applies this principle through experimental and analytical analyses of the proportional relationship between viscosity and the amplitude response of the first natural frequency mode of the sinusoidal vibration. Currently, the few cantilever-based viscometer designs that exist employ resonant frequency response as the parameter by which the viscosity is correlated. The proposed piezoelectric viscometer employs amplitude response in lieu of resonant frequency response. The goal of this aspect of the research was to provide data confirming amplitude response as a viable method for determining viscosity. A miniature piezoelectric plate was mounted to a small stainless-steel cantilever beam. The tip of the cantilever was immersed within various fluid test samples. The cantilever was then swept through a range of frequencies in which the first frequency mode resided. The operating principle being as the viscosity of the fluid increases the amplitude response of cantilever vibration will decrease relatively. What was found was in fact an inversely exponential relationship between dynamic viscosity and the cantilever beam's vibrational amplitude response. The experiment was performed using three types of cantilevers as to experimentally test the sensitivity of each.
Use of Bio-Product/Phase Change Material Composite in the Building Envelope for Building Thermal Control and Energy Savings
This research investigates the bio-products/phase change material (PCM) composites for the building envelope application. Bio-products, such as wood and herb, are porous medium, which can be applied in the building envelope for thermal insulation purpose. PCM is infiltrated into the bio-product (porous medium) to form a composite material. The PCM can absorb/release large amount of latent heat of fusion from/to the building environment during the melting/solidification process. Hence, the PCM-based composite material in the building envelope can efficiently adjust the building interior temperature by utilizing the phase change process, which improves the thermal insulation, and therefore, reduces the load on the HVAC system. Paraffin wax was considered as the PCM in the current studies. The building energy savings were investigated by comparing the composite building envelope material with the conventional material in a unique Zero-Energy (ZØE) Research Lab building at University of North Texas (UNT) through building energy simulation programs (i.e., eQUEST and EnergyPlus). The exact climatic conditions of the local area (Denton, Texas) were used as the input values in the simulations. It was found that the EnergyPlus building simulation program was more suitable for the PCM based building envelope using the latent heat property. Therefore, based on the EnergyPlus simulations, when the conventional structure insulated panel (SIP) in the roof and wall structures were replaced by the herb panel or herb/PCM composite, it was found that around 16.0% of energy savings in heating load and 11.0% in cooling load were obtained by using PCM in the bio-product porous medium.
Analysis of Heat Transfer Enhancement in Channel Flow through Flow-Induced Vibration
In this research, an elastic cylinder that utilized vortex-induced vibration (VIV) was applied to improve convective heat transfer rates by disrupting the thermal boundary layer. Rigid and elastic cylinders were placed across a fluid channel. Vortex shedding around the cylinder led to the periodic vibration of the cylinder. As a result, the flow-structure interaction (FSI) increased the disruption of the thermal boundary layer, and therefore, improved the mixing process at the boundary. This study aims to improve convective heat transfer rate by increasing the perturbation in the fluid flow. A three-dimensional numerical model was constructed to simulate the effects of different flow channel geometries, including a channel with a stationary rigid cylinder, a channel with a elastic cylinder, a channel with two elastic cylinders of the same diameter, and a channel with two elastic cylinders of different diameters. Through the numerical simulations, the channel maximum wall temperature was found to be reduced by approximately 10% with a stationary cylinder and by around 17% when introducing an elastic cylinder in the channel compared with the channel without the cylinder. Channels with two-cylinder conditions were also studied in the current research. The additional cylinder with the same diameter in the fluid channel only reduced the surface wall temperature by 3% compared to the channel without any cylinders because the volume of the second cylinder could occupy some space, and therefore, reduce the effect of the convective heat transfer. By reducing the diameter of the second cylinder by 25% increased the effect of the convection heat transfer and reduced the maximum wall temperature by around 15%. Compared to the channel with no cylinder, the introduction of cylinders into the channel flow was found to increase the average Nusselt number by 55% with the insertion of a stationary rigid cylinder, by 85% with the …
Estimating Thermal Conductivity and Volumetric Specific Heat of a Functionally Graded Material using Photothermal Radiometry
Functionally graded materials (FGMs) are inhomogeneous materials in which the material properties vary with respect to space. Research has been done by scientific community in developing techniques like photothermal radiometry (PTR) to measure the thermal conductivity and volumetric heat capacity of FGMs. One of the problems involved in the technique is to solve the inverse problem, i.e., estimating the thermal properties after the frequency scan has been obtained. The present work involves finding the unknown thermal conductivity and volumetric heat capacity of the FGMs by using finite volume method. By taking the flux entering the sample as periodic and solving the discretized 1-D thermal wave field equation at a frequency domain, one can obtain the complex temperatures at the surface of the sample for each frequency. These complex temperatures when solved for a range of frequencies gives the phase vs frequency scan which can then be compared to original frequency scan obtained from the PTR experiment by using a residual function. Brute force and gradient descent optimization methods have been implemented to estimate the unknown thermal conductivity and volumetric specific heat of the FGMs through minimization of the residual function. In general, the spatial composition profile of the FGMs can be approximated by using a smooth curve. Three functional forms namely Arctangent curve, Hermite curve, and Bezier curve are used in approximating the thermal conductivity and volumetric heat capacity distributions in the FGMs. The use of Hermite and Bezier curves gives the flexibility to control the slope of the curve i.e. the thermal property distribution along the thickness of the sample. Two-layered samples with constant thermal properties and three layered samples in which one of the layer has varying thermal properties with respect to thickness are considered. The program is written in Fortran and several test runs are performed. Results …
Development of a Natural Fiber Mat Plywood Composite
Natural fibers like kenaf, hemp, flax and sisal fiber are becoming alternatives to conventional petroleum fibers for many applications. One such applications is the use of Non-woven bio-fiber mats in the automobile and construction industries. Non-woven hemp fiber mats were used to manufacture plywood in order to optimize the plywood structure. Hemp fiber mats possess strong mechanical properties that comparable to synthetic fibers which include tensile strength and tensile modulus. This study focuses on the use of hemp fiber mat as a core layer in plywood sandwich composite. The optimization of fiber mat plywood was done by performing a three factor experiment. The three factors selected for this experiment were number of hemp mat layers in the core, mat treatment of the hemp mat, and the glue content in the core. From the analysis of all treatments it was determined that single hemp mat had the highest effect on improving the properties of the plywood structure.
Effect of Surface Treatment on the Performance of CARALL, Carbon Fiber Reinforced Aluminum Dissimilar Material Joints
Fiber-metal laminates (FML) are the advanced materials that are developed to improve the high performance of lightweight structures that are rapidly becoming a superior substitute for metal structures. The reasons behind their emerging usage are the mechanical properties without a compromise in weight other than the traditional metals. The bond remains a concern. This thesis reviews the effect of pre-treatments, say heat, P2 etch and laser treatments on the substrate which modifies the surface composition/roughness to impact the bond strength. The constituents that make up the FMLs in our present study are the Aluminum 2024 alloy as the substrate and the carbon fiber prepregs are the fibers. These composite samples are manufactured in a compression molding process after each pre-treatment and are then subjected to different tests to investigate its properties in tension, compression, flexural and lap shear strength. The results indicate that heat treatment adversely affects properties of the metal and the joint while laser treatments provide the best bond and joint strength.
Application of High Entropy Alloys in Stent Implants
High entropy alloys (HEAs) are alloys with five or more principal elements. Due to these distinct concept of alloying, the HEA exhibits unique and superior properties. The outstanding properties of HEA includes higher strength/hardness, superior wear resistance, high temperature stability, higher fatigue life, good corrosion and oxidation resistance. Such characteristics of HEA has been significant interest leading to researches on these emerging field. Even though many works are done to understand the characteristic of these HEAs, very few works are made on how the HEAs can be applied for commercial uses. This work discusses the application of High entropy alloys in biomedical applications. The coronary heart disease, the leading cause of death in the United States kills more than 350,000 persons/year and it costs $108.9 billion for the nation each year in spite of significant advancements in medical care and public awareness. A cardiovascular disease affects heart or blood vessels (arteries, veins and capillaries) or both by blocking the blood flow. As a surgical interventions, stent implants are deployed to cure or ameliorate the disease. However, the high failure rate of stents has lead researchers to give special attention towards analyzing stent structure, materials and characteristics. Many works related to alternate material and/or design are carried out in recent time. This paper discusses the feasibility of CoCrFeNiMn and Al0.1CoCrFeNi HEAs in stent implant application. This work is based on the speculation that CoCrFeNiMn and Al0.1CoCrFeNi HEAs are biocompatible material. These HEAs are characterized to determine the microstructure and mechanical properties. Computational modeling and analysis were carried out on stent implant by applying CoCrFeNiMn and Al0.1CoCrFeNi HEAs as material to understand the structural behavior.
Design of a Lower Extremity Exoskeleton to Increase Knee ROM during Valgus Bracing for Osteoarthritic Gait
Knee osteoarthritis (KOA) is the primary cause of chronic immobility in populations over the age of 65. It is a joint degenerative disease in which the articular cartilage in the knee joint wears down over time, leading to symptoms of pain, instability, joint stiffness, and misalignment of the lower extremities. Without intervention, these symptoms gradually worsen over time, decreasing the overall knee range of motion (ROM) and ability to walk. Current clinical interventions include offloading braces, which mechanically realign the lower extremities to alleviate the pain experienced in the medial compartment of the knee joint. Though these braces have proven effective in pain management, studies have shown a significant decrease in knee ROM while using the brace. Concurrently, development of active exoskeletons for rehabilitative gait has increased within recent years in efforts to provide patients with a more effective intervention for dealing with KOA. Though some developed exoskeletons are promising in their efficacy of fostering gait therapy, these devices are heavy, tethered, difficult to control, unavailable to patients, or costly due to the number of complicated components used to manufacture the device. However, the idea that an active component can improve gait therapy for patients motivates this study. This study proposes the design of an adjustable lower extremity exoskeleton which features a single linear actuator adapted onto a commercially available offloading brace. This design hopes to provide patients with pain alleviation from the brace, while also actively driving the knee through flexion and extension. The design and execution of this exoskeleton was accomplished by 3D computer simulation, 3D CAD modeling, and rapid prototyping techniques. The exoskeleton features 3D printed, ABS plastic struts and supports to achieve successful adaptation of the linear actuator to the brace and an electromechanical system with a rechargeable operating capacity of 7 hours. Design validation was …
Investigation of a Novel Vapor Chamber for Efficient Heat Spreading and Removal for Power Electronics in Electric Vehicles
This work investigated a novel vapor chamber for efficient heat spreading and heat removal. A vapor chamber acting as a heat spreader enables for more uniform temperature distribution along the surface of the device being cooled. First, a vapor chamber was studied and compared with the traditional copper heat spreader. The thickness of vapor chamber was kept 1.35 mm which was considered to be ultra-thin vapor chamber. Then, a new geometrical model having graphite foam in vapor space was proposed where the graphite foam material was incorporated in vapor space as square cubes. The effects of incorporating graphite foam in vapor space were compared to the vapor chamber without the embedded graphite foam to investigate the heat transfer performance improvements of vapor chamber by the high thermal conductivity graphite foam. Finally, the effects of various vapor chamber thicknesses were studied through numerical simulations. It was found that thinner vapor chamber (1.35 mm thickness) had better heat transfer performance than thicker vapor chamber (5 mm thickness) because of the extreme high effective thermal conductivities of ultra-thin vapor chamber. Furthermore, the effect of graphite foam on thermal performance improvement was very minor for ultra-thin vapor chamber, but significant for thick vapor chamber. The GF could help reduce the junction temperature by 15-30% in the 5-mm thick vapor chamber. Use of GF embedded vapor chamber could achieve 250-400 Watt per Centimeter square local heat removal for power electronics. The application of this is not only limited to electronic devices but actuator and avionics cooling in aircrafts, thermal management of electronics in directed energy weapon systems, battery thermal management for electric and hybrid vehicles, smart phones cooling, thus covering a wide gamut of heat flux applications.
Investigation on the Effects of Indoor Temperature Modulations on Building Energy Usage and Human Thermal Comfort
Energy efficiency in the operation of buildings is becoming increasingly important with a growing emphasis on sustainability and reducing environmental impacts of irresponsible energy usage. Improvements have been made both on the technology side of energy efficiency and on the human behavior side. However, when changing human behavior, it is critical to find energy conservation measures that will maintain comfort for occupants. This paper analyzes how this can be done by implementing a modulating temperature schedule based on the concept of alliesthesia, which states that pleasure is observed in transient states. EnergyPlus simulations were used to show that in cooling applications, this type of scheduling can produce significant energy savings. However, energy savings are not predicted for the same type of scheduling for heating applications. Thermal comfort was examined with a cooling experiment and a separate heating experiment, each lasting 45 minutes and taking place during the corresponding season. The experiments showed that modulating temperatures can cause occupants to experience more pleasure than if the temperature remained constant in a cooled space, whereas modulating temperatures had a negative impact on comfort relative to the constant temperature in the heated space. This presents evidence for an ideal opportunity for cooling applications by implementing modulating temperature schedules: an increase in thermal pleasure accompanied by a decrease in cooling energy.
Sustainable Ecofriendly Insulation Foams for Disaster Relief Housing
Natural disasters are affecting a significant number of people around the world. Sheltering is the first step in post-disaster activities towards the normalization of the affected people's lives. Temporary housing is being used in these cases until the construction of permanent houses are done. Disposal of temporary housing after use is leading to a significant environmental impact because most of them are filled with thermally insulative polymer foams that do not degrade in a short period. To reduce these problems this work proposes to use foams made with compostable thermoplastic polylactic acid (PLA) and degradable kenaf core as filler materials; these foams are made using CO2 as blowing agent for insulation purposes. Foams with PLA and 5%, 10% and 15% kenaf core were tested. Different properties and their relations were examined using differential scanning calorimetry (DSC), thermal conductivity, mechanical properties, scanning electron microscopy (SEM), x-ray μ-computed tomography (μ-CT) and building energy simulations were done using Energy Plus by NREL. The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity display a noticeable improvement.
Dissimilar Friction Stir Welding Between Magnesium and Aluminum Alloys
Joining two dissimilar metals, specifically Mg and Al alloys, using conventional welding techniques is extraordinarily challenging. Even when these alloys are able to be joined, the weld is littered with defects such as cracks, cavities, and wormholes. The focus of this project was to use friction stir welding to create a defect-free joint between Al 2139 and Mg WE43. The stir tool used in this project, made of H13 tool steel, is of fixed design. The design included an 11 mm scrolled and concave shoulder in addition to a 6 mm length pin comprised of two tapering, threaded re-entrant flutes that promoted and amplified material flow. Upon completion of this project an improved experimental setup process was created as well as successful welds between the two alloys. These successful joints, albeit containing defects, lead to the conclusion that the tool used in project was ill fit to join the Al and Mg alloy plates. This was primarily due to its conical shaped pin instead of the more traditional cylindrical shaped pins. As a result of this aggressive pin design, there was a lack of heat generation towards the bottom of the pin even at higher (800-1000 rpm) rotation speeds. This lack of heat generation prohibited the material from reaching plastic deformation thus preventing the needed material flow to form the defect free joint.
Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding
This research demonstrates the use of friction stir welding (FSW) to join dissimilar (Al-Mg) metal alloys. The main challenges in joining different, dissimilar metal alloys is the formation of brittle intermetallic compounds (IMCs) in the stir zone affecting mechanical properties of joint significantly. In this present study, FSW joining process is used to join aluminum alloy AA2139 and magnesium alloy WE43. The 9.5 mm thick plates of AA2139 and WE43 were friction stir butt welded. Different processing parameters were used to optimize processing parameters. Also, various weldings showed a crack at interface due to formation of IMCs caused by liquation during FSW. A good strength sound weld was obtained using processing parameter of 1200 rev/min rotational speed; 76.2 mm/min traverse speed; 1.5 degree tilt and 0.13 mm offsets towards aluminum. The crack faded away as the tool was offset towards advancing side aluminum. Mostly, the research was focused on developing high strength joint through microstructural control to reduce IMCs thickness in Al-Mg dissimilar weld joint with optimized processing parameter and appropriate tool offset.
Modeling of Fracture Toughness of Magnesium Alloy WE43 Before and After Friction Stir Processing
Magnesium alloys are a popular research topic for structural applications because they have a lower density than conventional structural materials, including steel, titanium, and aluminum; however, the reliability and safety of their mechanical properties must be further proven. An important mechanical property for this purpose is fracture toughness, which is the measure of the material's resistance to crack propagation. In this study, a model of an experiment to investigate the fracture toughness of a magnesium alloy WE43 before and after friction stir processing (FSP) is developed, and the results are compared to those produced by a digital image correlation (DIC) system during an experiment from another paper. The model results of the material before FSP matched well with the DIC results, but the model of the material after FSP only partially matches the DIC results. In addition, a theoretical approach to calculating the standard fracture toughness value, KIc, from the modeling results is proposed, and is found to be a conservative approach.
Modeling of Hexagonal Boron Nitride Filled Bismalemide Polymer Composites for Thermal and Electrical Properties for Electronic Packaging
Due to the multi-tasking and miniaturization of electronic devices, faster heat transfer is required from the device to avoid the thermal failure. Die-attached polymer adhesives are used to bond the chips in electronic packaging. These adhesives have to hold strong mechanical, thermal, dielectric, and moisture resistant properties. As polymers are insulators, heat conductive particles are inserted in it to enhance the thermal flow with an attention that there would be no electrical conductivity as well as no reduction in dielectric strength. This thesis focuses on the characterization of polymer nanocomposites for thermal and electrical properties with experimental and computational tools. Platelet geometry of hexagonal boron nitride offers highly anisotropic properties. Therefore, their alignment and degree of orientation offers tunable properties in polymer nanocomposites for thermal, electrical, and mechanical properties. This thesis intends to model the anisotropic behavior of thermal and dielectric properties using finite element and molecular dynamics simulations as well as experimental validation.
Particle Image Velocimetry Sensitivity Analysis Using Automatic Differentiation
A particle image velocimetry (PIV) computer software is analyzed in this work by applying automatic differentiation on it. We create two artificial images that contained particles that where moved with a known velocity field over time. These artificial images were created with parameters that we would have on real PIV experiments. Then we applied a PIV software to find the velocity output vectors. As we mentioned before, we applied automatic differentiation through all the algorithm to track the derivatives of the output vectors regarding interesting parameters declared as inputs. By analyzing these derivatives we analyze the sensitivity of the output vectors to changes on each one of the parameters analyzed. One of the most important derivatives calculated in this project was the derivative of the output regarding the image intensity. In future work we plan to use this derivative combined with the intensity probability distribution of each image pixel, to find PIV uncertainties. If we achieve this goal we will find an uncertainty method that will save computational power and will give uncertainty values with computer accuracy.
Conceptual Framework for the Development of an Air Quality Monitoring Station in Denton, Texas
Denton, Texas consistently reaches ozone nonattainment levels. This has led to a large focus of air pollution monitoring efforts in the region, with long-range transport being explored as a key contributor. For this study, the University of North Texas Discovery Park campus was chosen as a prospective location for an extensive air quality monitoring station. Sixteen years of ozone and meteorological data for five state-run monitoring sites within a 25 mile radius, including the nearest Denton Airport site, was gathered from TCEQ online database for the month of April for the years 2000 to 2015. The data was analyzed to show a historical, regional perspective of ozone near the proposed site. The maximum ozone concentration measured at the Denton Airport location over the 16 year period was measured at 96 ppb in 2001. Experimental ozone and meteorological measurements were collected at the Discovery Park location from March 26 to April 3 and April 8 to April, 2016 and compared to the Denton Airport monitoring site. A time lag in ozone trends and an increase in peak ozone concentrations at the proposed location were observed at the proposed site in comparison to the Denton Airport site. Historical and experimental meteorological data agreed in indicating that southern winds that rarely exceed 20 miles per hour are the predominant wind pattern. Back trajectories, wind roses, pollution roses, and bivariate plots created for peak ozone days during experimental periods support long range transport as a considerable cause of high ozone levels in Denton. Furthermore, a study of the precursor characteristics at the Denton Airport site indicated the site was being affected by a local source of nitrogen dioxide that was not affecting the proposed location. The differences in the Denton Airport site and the proposed site indicate that further monitoring at Discovery Park would …
Feasibility Study of Consolidation by Direct Compaction and Friction Stir Processing of Commercially Pure Titanium Powder
Commercially pure titanium can take up to six months to successfully manufacture a six-inch in diameter ingot in which can be shipped to be melted and shaped into other useful components. The applications to the corrosion-resistant, light weight, strong metal are endless, yet so is the manufacturing processing time. At a cost of around $80 per pound of certain grades of titanium powder, the everyday consumer cannot afford to use titanium in the many ways it is beneficial simply because the number of processing steps it takes to manufacture consumes too much time, energy, and labor. In this research, the steps it takes from the raw powder form to the final part are proposed to be reduced from 4-8 steps to only 2 steps utilizing a new technology that may even improve upon the titanium properties at the same time as it is reducing the number of steps of manufacture. The two-step procedure involves selecting a cylindrical or rectangular die and punch to compress a small amount of commercially pure titanium to a strong-enough compact for transportation to the friction stir welder to be consolidated. Friction stir welding invented in 1991 in the United Kingdom uses a tool, similar to a drill bit, to approach a sample and gradually plunge into the material at a certain rotation rate of between 100 to 2,100 RPM. In the second step, the friction stir welder is used to process the titanium powder held in a tight holder to consolidate into a harder titanium form. The resulting samples are cut to expose the cross section and then grinded, polished, and cleaned to be observed and tested using scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and a Vickers microhardness tester. The results were that the thicker the sample, the harder the resulting consolidated sample …
Quantification of Human Thermal Comfort for Residential Building's Energy Saving
Providing conditioned and fully controlled room is the final goal for having a comfortable building. But on the other hand making smart controllers to provide the required cooling or heating load depending on occupants' real time feeling is necessary. This study has emphasized on finding a meaningful and steady state parameter in human body that can be interpreted as comfort criterion which can be expressed as the general occupants' sensation through their ambient temperature. There are lots of researches on human physiological behavior in different situations and also different body parts reaction to the same ambient situation. Body parts which have the biggest reliable linear fluctuation to the changes are the best subject for this research. For these tests, wrist and palm have been selected and their temperatures on different people have been measured accurately with thermal camera to follow the temperature trend on various comfort levels. It is found that each person reaches to his own unique temperature on these two spots, when he/ she feels comfortable, or in other word each person's body temperature is a precise nominate for comfort feeling of that individual. So in future by having this unique comfort parameter and applying them to the HVAC system temperature control, controlling the dynamic temperature and correlating the indoor condition depending on the occupants instant thermal comfort level, would be a rational choice to bring convenience while energy has been saved more.
Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods
Two-dimensional (2D) transition metal dichalcogenides (TMDs) show great potential for the future electronics, optoelectronics and energy applications. But, the studies unveiling their interactions with the host substrates are sparse and limits their practical use for real device applications. We report the facile nano-scratch method to determine the adhesion energy of the wafer scale MoS2 atomic layers attached to the SiO2/Si and sapphire substrates. The practical adhesion energy of monolayer MoS2 on the SiO2/Si substrate is 7.78 J/m2. The practical adhesion energy was found to be an increasing function of the MoS2 thickness. Unlike SiO2/Si substrates, MoS2 films grown on the sapphire possess higher bonding energy, which is attributed to the defect-free growth and less number of grain boundaries, as well as less stress and strain stored at the interface owing to the similarity of Thermal Expansion Coefficient (TEC) between MoS2 films and sapphire substrate. Furthermore, we calculated the surface free energy of 2D MoS2 by the facile contact angle measurements and Neumann model fitting. A surface free energy ~85.3 mJ/m2 in few layers thick MoS2 manifests the hydrophilic nature of 2D MoS2. The high surface energy of MoS2 helps explain the good bonding strength at MoS2/substrate interface. This simple adhesion energy and surface energy measurement methodology could further apply to other TMDs for their widespread use.
Bioinspired & biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance
Hierarchical arrangement of biological composites such as nacre and bone containing high filler (ceramic) content results in high strength and toughness of the natural material. In this study we mimic the design of layered bone microstructure and fabricate an optimal multifunctional bio-nanocomposite having strength, toughness and corrosion resistance. Poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polymer was used as a substrate material with the reinforcement of LDH (Layered double hydroxide) as a nanofiller in different concentrations to achieve enhancement in mechanical properties as well as processing related thermostability. Corrosion resistance was increased by mimicking a layered structured which incorporated a tortuous diffusion path.
Feasibility of a New Technique to Determine Dynamic Tensile Behavior of Brittle Materials
Dynamic tensile characterization of geo-materials is critical to the modeling and design of protective structures that are often made of concrete. One of the most commonly used techniques currently associated with this type of testing is performed with a Kolsky bar and is known as the spall technique. The validity of the data from the spall technique is highly debated because the necessary boundary conditions for the experiment are not satisfied. By using a technique called pulse shaping, a new “controlled” spall technique was developed to satisfy all boundary conditions so that the analyzed data may be useful in modeling and design. The results from this project were promising and show the potential to revolutionize the way Kolsky bar testing is performed.
Field Validation of Zero Energy Lab Water-to-Water Ground Coupled Heat Pump Model
Heat pumps are a vital part of each building for their role in keeping the space conditioned for the occupant. This study focuses on developing a model for the ground-source heat pump at the Zero Energy lab at the University of North Texas, and finding the minimum data required for generating the model. The literature includes many models with different approaches to determine the performance of the heat pump. Each method has its pros and cons. In this research the equation-fit method was used to generate a model based on the data collected from the field. Two experiments were conducted for the cooling mode: the first one at the beginning of the season and the second one at the peak of the season to cover all the operation conditions. The same procedure was followed for the heating mode. The models generated based on the collected data were validated against the experiment data. The error of the models was within ±10%. The study showed that the error could be reduced by 20% to 42% when using the field data to generate the model instead of the manufacturer’s catalog data. Also it was found that the minimum period to generate the cooling mode model was two days and two hours from each experiment, while for the heating mode it was four days and two hours from each experiment.
Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement
This thesis aims to develop a new type of highly stretchable strain sensor to measure large deformation of a specimen subjected to dynamic loading. The sensor was based on the piezo-resistive response of carbon nanotube(CNT)/polydimethysiloxane (PDMS) composites thin films, some nickel particles were added into the sensor composite to improve the sensor performance. The piezo-resistive response of CNT composite gives high frequency response in strain measurement, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measuring large strain (up to 26%) with an excellent linearity and a fast frequency response under quasi-static test, the delay time for high strain rate test is just 30 μs. This stretchable strain sensor is also able to exhibit much higher sensitivities, with a gauge factor of as high as 80, than conventional foil strain gauges.
Back to Top of Screen