UNT Theses and Dissertations - 9 Matching Results

Search Results

Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films

Description: The effects of methane (CH4), diborone (B2H6) and nitrogen (N2) concentrations on the structure and photoelectron emission properties of chemical vapor deposition (CVD) polycrystalline diamond films were studied. The diamond films were grown on single-crystal Si substrates using the hot-tungsten filament CVD technique. Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) were used to characterize the different forms of carbon in the films, and the fraction of sp3 carbon to sp3 plus sp2 carbon at the surface of the films, respectively. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the films. The photoelectron emission properties were determined by measuring the energy distributions of photoemitted electrons using ultraviolet photoelectron spectroscopy (UPS), and by measuring the photoelectric current as a function of incident photon energy.
Date: August 1998
Creator: Akwani, Ikerionwu Asiegbu
Partner: UNT Libraries

On Delocalization Effects in Multidimensional Lattices

Description: A cubic lattice with random parameters is reduced to a linear chain by the means of the projection technique. The continued fraction expansion (c.f.e.) approach is herein applied to the density of states. Coefficients of the c.f.e. are obtained numerically by the recursion procedure. Properties of the non-stationary second moments (correlations and dispersions) of their distribution are studied in a connection with the other evidences of transport in a one-dimensional Mori chain. The second moments and the spectral density are computed for the various degrees of disorder in the prototype lattice. The possible directions of the further development are outlined. The physical problem that is addressed in the dissertation is the possibility of the existence of a non-Anderson disorder of a specific type. More precisely, this type of a disorder in the one-dimensional case would result in a positive localization threshold. A specific type of such non-Anderson disorder was obtained by adopting a transformation procedure which assigns to the matrix expressing the physics of the multidimensional crystal a tridiagonal Hamiltonian. This Hamiltonian is then assigned to an equivalent one-dimensional tight-binding model. One of the benefits of this approach is that we are guaranteed to obtain a linear crystal with a positive localization threshold. The reason for this is the existence of a threshold in a prototype sample. The resulting linear model is found to be characterized by a correlated and a nonstationary disorder. The existence of such special disorder is associated with the absence of Anderson localization in specially constructed one-dimensional lattices, when the noise intensity is below the non-zero critical value. This work is an important step towards isolating the general properties of a non-Anderson noise. This gives a basis for understanding of the insulator to metal transition in a linear crystal with a subcritical noise.
Date: May 1998
Creator: Bystrik, Anna
Partner: UNT Libraries

Synthesis and Study of Engineered Heterogenous Polymer Gels

Description: This dissertation studies physical properties and technological applications of engineered heterogenous polymer gels. Such gels are synthesized based on modulation of gel chemical nature in space. The shape memory gels have been developed in this study by using the modulated gel technology. At room temperature, they form a straight line. As the temperature is increased, they spontaneously bend or curl into a predetermined shape such as a letter of the alphabet, a numerical number, a spiral, a square, or a fish. The shape changes are reversible. The heterogenous structures have been also obtained on the gel surface. The central idea is to cover a dehydrated gel surface with a patterned mask, then to sputter-deposit a gold film onto it. After removing the mask, a gold pattern is left on the gel surface. Periodical surface array can serve as gratings to diffract light. The grating constant can be continuously changed by the external environmental stimuli such as temperature and electric field. Several applications of gels with periodic surface arrays as sensors for measuring gel swelling ratio, internal strain under an uniaxial stress, and shear modulus have been demonstrated. The porous NIPA gels have been synthesized by suspension technique. Microstructures of newly synthesized gels are characterized by both SEM and capillary test and are related to their swelling and mechanical properties. The heterogenous porous NIPA gel shrink about 35,000 times faster than its counterpart--the homogeneous NIPA gel. Development of such fast responsive gels can result in sensors and devices applications. A new gel system with built-in anisotropy is studied. This gel system consists of interpenetrated polymer network (IPN) gels of polyacrylamide (PAAM) and N-isopropylacrylamide (NIPA). The swelling property of the anisotropy IPN gels along the pre-stressing direction is different from that along other directions, in contrast to conventional gels which swell isotropically. ...
Date: August 1998
Creator: Chen, Yuanye
Partner: UNT Libraries

Fluorine Adsorption and Diffusion in Polycrystalline Silica

Description: The measurement of fluorine penetration into archeological flint artifacts using Nuclear Reaction Analysis (NRA) has been reported to be a potential dating method. However, the mechanism of how fluorine is incorporated into the flint surface, and finally transported into the bulk is not well understood. This research focuses on the study of the fluorine uptake phenomenon of flint mineral in aqueous fluoride solutions. Both theoretical and experimental approaches have been carried out. In a theoretical approach, a pipe-diffusion model was used to simulate the complicated fluorine transportation problem in flint, in which several diffusion mechanisms may be involved.
Date: December 1998
Creator: Jin, Jian-Yue
Partner: UNT Libraries

Scanning Tunneling Microscopy of Epitaxial Diamond (110) and (111) Films and Field Emission Properties of Diamond Coated Molybdenum Microtips

Description: The growth mechanism of chemical vapor deposition (CVD) grown homo-epitaxial diamond (110) and (111) films was studied using ultrahigh vacuum (UHV) scanning tunneling microscopy (STM). In addition, the field emission properties of diamond coated molybdenum microtips were studied as a function of exposure to different gases.
Date: May 1998
Creator: Lim, Seong-Chu
Partner: UNT Libraries

Quantum-Confined CdS Nanoparticles on DNA Templates

Description: As electronic devices became smaller, interest in quantum-confined semiconductor nanostructures increased. Self-assembled mesoscale semiconductor structures of II-VI nanocrystals are an especially exciting subject because of their controllable band gap and unique photophysical properties. Several preparative methods to synthesize and control the sizes of the individual nanocrystallites and the electronic and optical properties have been intensively studied. Fabrication of patterned nanostructures composed of quantum-confined nanoparticles is the next step toward practical applications. We have developed an innovative method to fabricate diverse nanostructures which relies on the size and a shape of a chosen deoxyribonucleic acid (DNA) template.
Date: May 1998
Creator: Rho, Young Gyu
Partner: UNT Libraries

Two-Fold Role of Randomness: A Source of Both Long-Range Correlations and Ordinary Statistical Mechanics

Description: The role of randomness as a generator of long range correlations and ordinary statistical mechanics is investigated in this Dissertation. The difficulties about the derivation of thermodynamics from mechanics are pointed out and the connection between the ordinary fluctuation-dissipation process and possible anomalous properties of statistical systems is highlighted.
Date: December 1998
Creator: Rocco, A. (Andrea)
Partner: UNT Libraries

On Chaos and Anomalous Diffusion in Classical and Quantum Mechanical Systems

Description: The phenomenon of dynamically induced anomalous diffusion is both the classical and quantum kicked rotor is investigated in this dissertation. We discuss the capability of the quantum mechanical version of the system to reproduce for extended periods the corresponding classical chaotic behavior.
Date: August 1998
Creator: Stefancich, Marco
Partner: UNT Libraries