UNT Theses and Dissertations - 15 Matching Results

Search Results

Presence of Wolbachia, A Potential Biocontrol Agent: Screening for Vertebrate Blood Meal Source and West Nile Virus in Mosquitoes in the North Texas Region

Description: West Nile virus (WNV) is a geographically endemic mosquito-borne flavivirus that has spread across the United States infecting birds, mosquitos, humans, horses and other mammals. The wide spread nature of this virus is due to the ability of the mosquito vector to persist in broad, ecological diverse environments across the United States. In this study, mosquito populations in North Texas region were sampled for detection of Wolbachia, blood meal source, and WNV. The ultimate goal of this study was to examine the potential of a biocontrol agent, Wolbachia sp. that colonizes the hindgut of various insects, including mosquitos, as a natural means to interrupt virus transmission from mosquitos to other hosts, including humans. In Australia, Wolbachia sp. from fruit flies (Drosophila melanogaster) have been successfully used to block transmission of a similar pathogenic virus from mosquitos responsible for transmission of Dengue fever. Here, mosquitoes were collected using CDC style Gravid Traps in Denton, Texas, from October 2012 through September 2014. Collected mosquitoes were identified, sexed, and categorized as to the amount of host blood in their alimentary system using a Zeiss Axio Zoom microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY). Culex quinquefaciatus was the dominant blood engorged species collected. Smaller populations of Culex tarsalis and Aedes albopictus, another known vector for WNV were also collected. Mosquito larva were also collected from the UNT water research field station and reared to adults. Cx. tarsalis was the dominant mosquito taken from this habitat. Samples of Cx. quinquefasciatus, Cx. tarsalis and A. albopictus were analyzed for Wolbachia sp. and to identify host blood in the mosquito alimentary system. Total DNA extraction from the pool of mosquito samples was by both commercially available DNA extraction kits (Qiagen, Valencia, CA) and salt extraction technique. Polymerase chain reaction (PCR) was used to amplify and identify Wolbachia ...
Date: August 2016
Creator: Adiji, Olubu Adeoye
Partner: UNT Libraries

The Role of the Actin Cytoskeleton in Asymmetric Cell Division in Maize

Description: Stomata are specialized plant structures required for gaseous exchange with the outer environment. During stomata formation, the cytoskeleton plays an important role in controlling the division of the individual cells leading to the generation of the stomata complex. Two mutants that affect microfilament and microtubule organization in subsidiary mother cells include brk1 and dcd1. While only 20% of the subsidiary cells in the brk1 and dcd1 single mutants are abnormally shaped, it was reported that there is a synergistic effect between the brk1 and dcd1 mutations in the brk1; dcd1 double mutant since 100% of the subsidiary cells are abnormal. The focus of this research is to try to understand this synergistic effect by investigating the actin cytoskeleton and nuclear position in the single and double mutants. The reported results include the observation that the size of actin patch was largest in the wild-type subsidiary mother cells (SMCs) and smallest in dcd1 and brk1; dcd1 SMCs and that brk1 and brk1; dcd1 double mutants had fewer actin patches than wild-type and dcd1 SMCs. Additionally, we observed that some SMCs that did not have actin patches still underwent nuclear migration suggesting that nuclear migration may not be solely dependent on actin patch formation. Finally, during SMC cytokinesis, a large percentage of double mutant (brk1; dcd1) cells showed an off-track development of the phragmoplast as compared to the single mutants and the wild-type plant explaining the large number of abnormally shaped subsidiary cells in the double mutants.
Date: August 2014
Creator: Alhassan, Hassan Hamdan
Partner: UNT Libraries

Role of GPR17 in Thrombocyte Aggregation in Adult Zebrafish

Description: GPR17, a uracil nucleotide cysteinyl leukotriene receptor, belongs to the GPCR (G protein coupled receptor) family. It has been shown recently that inhibiting this protein in the nervous system in mice can lead to blockage of oligodendrocyte maturation, which supports myelin repair. Interestingly, our laboratory found GPR17 in thrombocytes. However, we do not know whether it has any function in thrombocyte aggregation or the nature of the ligand. In this paper, we studied the role of GPR17 in hemostasis, which is a fundamental defense mechanism in the event of injury. Using zebrafish as a model system, our laboratory has studied specifically thrombocytes, which play a significant role in hemostasis. The major reasons to use zebrafish as a model system are that their thrombocytes are functionally equivalent to human platelets, the adult fish are amenable to knockdown experiments, and they are readily available in the market. This study was performed by using a piggy back knockdown method where we used a chemical hybrid of control morpholino and an antisense oligonucleotide sequence leads to the degradation the mRNA for GPR17. After knockdown GPR17 in thrombocytes, the percent difference of the thrombocytes aggregation between the control and knockdown blood samples was measured by flow cytometry. We used various thrombocyte agonists to study differences in aggregation between the control and knockdown blood samples. The study showed that knockdown of GPR17 resulted in no significant differences in percent thrombocyte aggregation between control and agonist treated samples except for a slight increase in collagen-treated samples. Thus, it appears that GPR17 has no significant role in hemostasis.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2015
Creator: Bohassan, Maruah Hejey
Partner: UNT Libraries

Alterations in Fatty Acid Amide Hydrolase (Faah) Transcript Levels and Activity Lead to Changes in the Abiotic Stress Susceptibility of Arabidopsis Thaliana

Description: N-Acylethanolamines (NAEs) are a class of bioactive lipids, and FAAH is one of the enzymes responsible for degrading NAEs in both plants and animals. in plants, FAAH appears to be closely associated with ABA, a phytohormone which has long been associated with plant stress responses, since the overexpression of FAAH in Arabidopsis results in ABA hypersensitivity. Therefore, it is reasonable to speculate that alterations in FAAH transcript levels will result in altered stress responses in plants. to investigate this hypothesis experiments were carried out in which wild type (WT), FAAH-overexpressing (OE), and T-DNA insertional FAAH knockouts of Arabidopsis (faah) were grown in MS media under stress conditions. the stress conditions tested included chilling stress, heavy metal stress induced by cadmium or copper, nutrient limitations induced by low phosphorus or low nitrogen, salt stress induced with NaCl, and osmotic stress induced with mannitol. the OE plants were consistently hypersensitive to all stress conditions in relation to wild type plants. Inactive FAAH overexpressors did not have the hypersensitivity to the salt and osmotic stress of the active OE plants and were instead tolerant to these stresses. FAAH2 (faah2) knockouts and FAAH 1 and 2 double knockouts (faah 1+2) were based on some root development parameters somewhat more tolerant than WT plants, but more sensitive in terms of shoot growth. Collectively the data suggests that FAAH activity may interact with stress-responsive pathways in plants, perhaps including pathways involving ABA.
Date: May 2012
Creator: Gonzalez, Gabriel
Partner: UNT Libraries

Influence of a Human Lipodystrophy Gene Homologue on Neutral Lipid Accumulation in Arabidopsis Leaves

Description: CGI-58 is the defective gene in the human neutral lipid storage disease called Chanarin-Dorfman syndrome. This disorder causes intracellular lipid droplets to accumulate in nonadipose tissues, such as skin and blood cells. Here, disruption of the homologous CGI-58 gene in Arabidopsis thaliana resulted in the accumulation of neutral lipid droplets in mature leaves. Mass spectroscopy of isolated lipid droplets from cgi-58 loss-of-function mutants showed they contain triacylglycerols with common leaf specific fatty acids. Leaves of mature cgi-58 plants exhibited a marked increase in absolute triacylglycerol levels, more than 10-fold higher than in wild-type plants. Lipid levels in the oil-storing seeds of cgi-58 loss-of-function plants were unchanged, and unlike mutations in beta-oxidation, the cgi-58 seeds germinated and grew normally, requiring no rescue with sucrose. We conclude that the participation of CGI-58 in neutral lipid homeostasis of nonfat-storing tissues is similar, although not identical, between plant and animal species. This unique insight may have implications for designing a new generation of technologies that enhance the neutral lipid content and composition of corp plants.
Date: August 2016
Creator: James, Christopher Neal
Partner: UNT Libraries

Metabolism and Action of Polyunsaturated N-acylethanolamines in Arabidopsis thaliana Seedlings

Description: The lipoxygenase (LOX) pathway plays an important role in the oxidative metabolism of polyunsaturated N-acylethanolamines (PU-NAEs). The LOX pathway functions in conjugation with hydrolysis by fatty acid amide hydrolase (FAAH) and to produce oxidized NAEs during seed germination and early seedling development. When Arabidopsis seedlings were grown in low micromolar concentrations of lauroylethanolamide (NAE 12:0), growth retardation and elevated endogenous PU-NAE levels were observed due to the competitive inhibition of LOX by NAE 12:0. The elevated levels of endogenous PU-NAEs were more pronounced in genotypes with reduced NAE hydrolase capacity (faah knockouts), and less evident with overexpression of FAAH. Alterations in PU-NAE metabolism were studied in seedlings of various lox and FAAH mutants. The partitioning of PU-NAEs into oxylipin metabolites was exaggerated in the presence of exogenous linolenoylethanolamide (NAE18:3) and resulted in bleaching of cotyledons. The bleaching phenotype was restricted to a narrow developmental window (3-to-5 days after sowing), and was attributed to a reversible disruption of thylakoid membranes in chloroplasts. Biochemical and genetic evidence suggested that 9-hydro(pero)xy and 13-hydro(pero)xy octadecatrienoylethanolamides (9- and 13-NAE-H(P)OT), but not their corresponding hydro(pero)xy free fatty acids, induced cotyledon bleaching. The LOX-mediated metabolites of NAE18:3 shared some overlapping effects on seedling development with those of linoleoylethanolamide (NAE18:2) such as a reduction in seedling root growth. On the other hand, NAE18:3 oxylipin metabolites also exhibited distinct effects during seedling development such as the inhibition of photomorphogenesis. Biochemical and genetic evidence indicated that a LOX-mediated metabolite of NAE18:2, 9-hydro(pero)xy octadecadienoylethanolamide (9-NAE-H(P)OD), acted as a potent negative regulator of seedling root development, and this depended on an intact abscisic acid (ABA) signaling pathway. Synergistic inhibition of root elongation between 9-NAE-H(P)OD and ABA was restricted to a narrow developmental window (3-to-5 d after sowing) of seedling development. Genetic evidence with Arabidopsis mutants in ABA synthesis (aba1, aba2), perception (pyr1, ...
Date: August 2015
Creator: Keereetaweep, Jantana
Partner: UNT Libraries

Metabolic Engineering in Plants to Control Source/sink Relationship and Biomass Distribution

Description: Traditional methods like pruning and breeding have historically been used in crop production to divert photoassimilates to harvested organs, but molecular biotechnology is now poised to significantly increase yield by manipulating resource partitioning. It was hypothesized that metabolic engineering in targeted sink tissues can favor resource partitioning to increase harvest. Raffinose Family Oligosaccharides (RFOs) are naturally occurring oligosaccharides that are widespread in plants and are responsible for carbon transport, storage and protection against cold and drought stress. Transgenic plants (GRS47, GRS63) were engineered to generate and transport more RFOs through the phloem than the wild type plants. The transgenic lines produced more RFOs and the RFOs were also detected in their phloem exudates. But the 14CO2 labeling and subsequent thin layer chromatography analysis showed that the RFOs were most likely sequestered in an inactive pool and accumulate over time. Crossing GRS47 and GRS63 lines with MIPS1 plants (that produces more myo-inositol, a substrate in the RFO biosynthetic pathway) did not significantly increase the RFOs in the crossed lines. For future manipulation of RFO degradation in sink organs, the roles of the endogenous α-galactosidases were analyzed. The alkaline α-galactosidases (AtSIP1 and AtSIP2 in Arabidopsis) are most likely responsible for digesting RFOs in the cytoplasm and may influence the ability to manipulate RFO levels in engineered plants. Atsip1/2 (AtSIP1/AtSIP2 double-knockout plants) were generated and phenotypically characterized based on seed germination patterns, flowering time, and sugar content to observe the impact on RFO sugar levels. The observations and analysis from these lines provide a basis for further insight in the manipulation of resource allocation between source and sink tissues in plants for future research.
Date: August 2013
Creator: Lahiri, Ipsita
Partner: UNT Libraries

brk1 and dcd1 Act Synergistically in Subsidiary Cell Formation in Zea mays

Description: Subsidiary mother cell (SMC) divisions during stomatal complex formation in Zea mays are asymmetric generating a small subsidiary cell (SC) and a larger epidermal cell. Mutants with a high number of abnormally shaped subsidiary cells include the brick1 (brk1) and discordia1 (dcd1) mutants. BRK1 is homologous to HSPC300, an ARP2/3 complex activator, and is involved in actin nucleation while DCD1 is a regulatory subunit of the PP2A phosphatase needed for microtubule generation (Frank and Smith, 2002; Wright et al. 2009). Possible causes of the abnormal SCs in brk1 mutants include a failure of the SMC nucleus to polarize in advance of mitosis, no actin patch, and transverse and/or no PPBs (Gallagher and Smith, 2000; Panteris et al 2006). The abnormal subsidiary mother cell division in dcd1 is due to correctly localized, but disorganized preprophase bands (PPBs; Wright et al. 2009). The observation that brk1 has defects in PPB formation and that the dcd1 phenotype is enhanced by the application of actin inhibitors led us to examine the dcd1; brk1 double mutant (Gallagher and Smith, 1999). We found that dcd1; brk1 double mutants demonstrate a higher percentage of aberrant SCs than the single mutants combined suggesting that these two mutations have a synergistic and additive effect on SC formation. Our observations and results are intriguing and the future step will be to quantitate the abnormal PPBs and phragmoplasts in the double and single mutants using immunolocalization of tubulin and actin as well as observations of live cells expressing tubulin-YFP.
Date: August 2014
Creator: Malhotra, Divya
Partner: UNT Libraries

Regulation of Alternative Sigma Factors During Oxidative and Ph Stresses in the Phototroph Rhodopseudomonas Palustris

Description: Rhodopseudomonas palustris is a metabolically versatile phototrophic α-proteobacterium. The organism experiences a wide range of stresses in its environment and during metabolism. The oxidative an pH stresses of four ECF (extracytoplasmic function) σ-factors are investigated. Three of these, σ0550, σ1813, and σ1819 show responses to light-generated singlet oxygen and respiration-generated superoxide reactive oxygen species (ROS). The EcfG homolog, σ4225, shows a high response to superoxide and acid stress. Two proteins, one containing the EcfG regulatory sequence, and an alternative exported catalase, KatE, are presented to be regulated by σ4225. Transcripts of both genes show similar responses to oxidative stress compared to σ4225, indicating it is the EcfG-like σ-factor homolog and controls the global stress response in R. palustris.
Date: August 2014
Creator: Perry, Leslie M.
Partner: UNT Libraries

Expression of G-protein Coupled Receptors in Young and Mature Thrombocytes and Knockdown of Gpr18 in Zebrafish

Description: In this study, a novel method based on biotinylated antibodies and streptavidin coated magnetic beads was used to separate the thrombocyte subpopulations from zebrafish whole blood. DiI-C18, a lipophilic dye, labels only young thrombocytes when used at low concentrations. Commercially available biotinylated anti-Cy3 antibody was used to label the chromophore of DiI-C18 on the young thrombocytes and streptavidin coated magnetic beads were added subsequently, to separate young thrombocytes. The remaining blood cells were probed with custom-made biotinylated anti-GPIIb antibody and streptavidin magnetic beads to separate them from other cells. Further, thrombocytes are equivalents of mammalian platelets. Platelets play a crucial role in thrombus formation. The G-protein coupled receptors (GPCRs) present on the platelet surface are involved during platelet activation and aggregation processes. So, thrombocytes were studied for the presence of GPCRs. The GPCR mRNA transcripts expressed in the young and mature thrombocytes were subjected to densitometry analysis and pixel intensities of the bands were compared using one way ANOVA. This analysis did not show significant differences between the young and mature GPCR mRNA transcripts but identified a novel GPCR, GPR18 that was not reported in platelets earlier. To study the function of this GPCR, it was knocked down using GPR18 specific antisense morpholino and vivo morpholino. The immunofluorescence experiment indicated the presence of GPR18 on thrombocytes. The results of the assays, such as, time to occlusion (TTO) and time to aggregation (TTA) in response to N-arachidonyl glycine (NAG) as an agonist, showed prolongation of time in GPR18 larval and adult morphants respectively, suggesting that GPR18 plays a role in thrombus formation in zebrafish. In conclusion, our results indicate that GPR18 may be present in zebrafish thrombocytes, it may be involved in thrombus formation and that NAG may be an agonist at GPR18 on thrombocytes.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2013
Creator: Potbhare, Vrinda Nikhil
Partner: UNT Libraries

Identification of Genes Involved in Flocculation by Whole Genome Sequencing of Thauera aminoaromatica Strain MZ1T Floc-defective Mutants

Description: Thauera aminoaromatica MZ1T, a floc-forming bacterium isolated from an industrial activated sludge wastewater treatment plant, overproduces exopolysaccharide (EPS) leading to viscous bulking. This phenomenon results in poor sludge settling and dewatering during the clarification process. To identify genes responsible for bacterial flocculation, a whole genome phenotypic sequencing technique was applied. Genomic DNA of MZ1T flocculation-deficient mutants were subjected to massively parallel sequencing. The resultant high-quality reads were assembled and compared to the reference genome of the wild type genome. We identified nine nonsynonymous mutations and one nonsense mutation putatively involved in EPS biosynthesis. Complementation of the nonsense mutation located in an EPS deacetylase gene restored the flocculating phenotype. The FTIR spectra of EPS isolated from the wild-type showed reduced C=O peak of the N-acetyl group at 1665 cm-1 as compared to the spectra of MZ1T floc-deficient mutant EPS, suggesting that the WT EPS was partially deacetylated. Gene expression analysis also demonstrated the deacetylase gene transcript increased before flocculation occurred. The results suggest that the deacetylation of MZ1T EPS is crucial for flocculation. The information obtained from this study will be useful for preventing viscous bulking and wastewater treatment system failure, and may have potential applications in the biotechnology sector for the controlled removal of cells.
Date: December 2015
Creator: Prombutara, Pinidphon
Partner: UNT Libraries

Cytochrome P450 Gene Expression Modulates Anoxia Sensitivity in Caenorhabditis Elegans

Description: With an increasing population suffering from obesity or Diabetes Mellitus (DM), it is more pertinent than ever to understand how physiological changes impact cellular processes. Patients with DM often suffer from obesity, hyperglycemia, altered fatty acids that contribute to vascular dysfunction, and increased risk to ischemia. Caenorhabditis elegans is a model system used to study the conserved insulin signaling pathway, cellular responses in whole organisms and the impact a glucose diet has on oxygen deprivation (anoxia) responses. RNA-sequencing (RNA-Seq) was used to analyze the expression of genes in the anoxia sensitive populations of N2 (wild-type) fed glucose and hyl-2(tm2031), a mutant with altered ceramide metabolism. Comparison of the altered transcripts in the anoxia sensitive populations revealed 199 common transcripts- 192 upregulated and 7 downregulated. One of the gene families that have altered expression in the anoxia sensitive populations encode for Cytochrome P450 (CYP). CYPs are located both in the mitochondria and endoplasmic reticulum (ER), but the CYPs of interest are all predicted to be mainly subcellularly localized to the ER. Here, I determined that knock-down of specific cyp genes, using RNA interference (RNAi), increased anoxia survival in N2 animals fed a standard diet. Anoxia sensitivity of the hyl-2(tm2031) animals was supressed by RNAi of cyp-25A1 or cyp-33C8 genes. These studies provide evidence that the CYP detoxification system impacts oxygen deprivation responses. using hsp-4::GFP animals, a transcriptional reporter for ER unfolded protein response (UPR), I further investigated the impact of cyp knock-down, glucose, and anoxia on ER UPR due to the prediction of CYP-33C8 localization to the ER. Glucose significantly increased ER UPR and cyp knock-down non-significantly increased ER UPR. Measurements of ER UPR due to anoxia were made difficult, but representative images show an increase in ER stress post 9-hour anoxia exposure. This study provides evidence that glucose affects ER ...
Date: August 2016
Creator: Quan, Daniel L
Partner: UNT Libraries

Cloacal Microbiota of Captive-bred and Wild Attwater’s Prairie-chicken, Tympanuchus Cupido Attwateri

Description: The Attwater’s prairie-chicken (Tympanuchus cupido attwateri; APC) is a species of grouse native to Texas coastal prairies and is on the critically endangered species list as a result of habitat destruction and overhunting. All of the current populations were captively bred and released into the wild. Survivorship for released APCs is very low, and individuals seldom survive to reproduce in the wild. One factor contributing to this may be an alteration in the gut microbiota as a result of captivity. Factors potentially influencing the gut microbial composition in captivity include antibiotic therapy, stress, and a predominantly commercially formulated diet. Recent studies have begun to shed light on the importance of the host microbial endosymbionts. Antibiotic administration, stress, diet, age, genotype and other factors have been shown to influence microbial populations in the gastrointestinal tracts of many different vertebrates. Sequencing of 16S rRNA gene amplicons on the Ion Torrent™ platform was used in this study to identify groups of bacteria in the cloacas as a surrogate for the gut microbiota in the APC. Antibiotic-treated and untreated birds, wild-hatched and captive-bred birds, and individuals sampled before and after release to the wild were examined. Significant differences were found between wild-hatched and captive raised birds both pre- and post release. In addition, there was extensive variation among the populations at the lower taxonomic ranks between individuals for each group of APCs. Principal coordinate analysis based on the weighted UniFrac distance metric further exhibited some clustering of individuals by treatment. These data suggest that captive breeding may have long-term effects on the cloacal microbiota of APCs with unknown consequences to their long-term health and survivorship.
Date: August 2014
Creator: Simon, Stephanie E.
Partner: UNT Libraries

Identification of Hox Genes Controlling Thrombopoiesis in Zebrafish

Description: Thrombocytes are functional equivalents of mammalian platelets and also possess megakaryocyte features. It has been shown earlier that hox genes play a role in megakaryocyte development. Our earlier microarray analysis showed five hox genes, hoxa10b, hoxb2a, hoxc5a, hoxc11b and hoxd3a, were upregulated in zebrafish thrombocytes. However, there is no comprehensive study of genome wide scan of all the hox genes playing a role in megakaryopoiesis. I first measured the expression levels of each of these hox genes in young and mature thrombocytes and observed that all the above hox genes except hoxc11b were expressed equally in both populations of thrombocytes. hoxc11b was expressed only in young thrombocytes and not in mature thrombocytes. The goals of my study were to comprehensively knockdown hox genes and identify the specific hox genes involved in the development of thrombocytes in zebrafish. However, the existing vivo-morpholino knockdown technology was not capable of performing such genome-wide knockdowns. Therefore, I developed a novel cost- effective knockdown method by designing an antisense oligonucleotides against the target mRNA and piggybacking with standard control morpholino to silence the gene of interest. Also, to perform knockdowns of the hox genes and test for the number of thrombocytes, the available techniques were both cumbersome or required breeding and production of fish where thrombocytes are GFP labeled. Therefore, I established a flow cytometry based method of counting the number of thrombocytes. I used mepacrine to fluorescently label the blood cells and used the white cell fraction. Standard antisense oligonucleotide designed to the central portion of each of the target hox mRNAs, was piggybacked by a control morpholino and intravenously injected into the adult zebrafish. The thrombocyte count was measured 48 hours post injection. In this study, I found that the knockdown of hoxc11b resulted in increased number of thrombocytes and knockdown of hoxa10b, ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2015
Creator: Sundaramoorthi, Hemalatha
Partner: UNT Libraries

Development of von Willebrand Factor Zebrafish Mutant Using CRISPR/Cas9 Mediated Genome Editing

Description: von Willebrand factor (VWF) protein acts in the intrinsic coagulation pathway by stabilizing FVIII from proteolytic clearance and at the site of injury, by promoting the adhesion and aggregation of platelets to the exposed subendothelial wall. von Willebrand disease (VWD) results from quantitative and qualitative deficiencies in VWF protein. The variability expressivity in phenotype presentations is in partly caused by the action of modifier genes. Zebrafish has been used as hemostasis animal model. However, it has not been used to evaluate VWD. Here, we report the development of a heterozygote VWF mutant zebrafish using the genome editing CRISPR/Cas9 system to screen for modifier genes involved in VWD. We designed CRISPR oligonucleotides and inserted them into pT7-gRNa plasmid. We then prepared VWF gRNA along with the endonuclease Cas9 RNA from Cas9 plasmid. We injected these two RNAs into 1-4 cell-stage zebrafish embryos and induced a mutation in VWF exon 29 of the zebrafish with a mutagenesis rate of 16.6% (3/18 adult fish). Also, we observed a germline transmission with an efficiency rate of 5.5% (1/18 adult fish). We obtained a deletion in exon 29 which should result in truncated VWF protein.
Date: May 2017
Creator: Toffessi Tcheuyap, Vanina
Partner: UNT Libraries