UNT Theses and Dissertations - 266 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

The Effect of Average Grain Size on Polycrystalline Diamond Films

Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
Date: May 2002
Creator: Abbott, Patrick Roland
Partner: UNT Libraries

Proton-Induced L-shell X-Rays of Pr, Sm, Eu, Gd, and Dy

Description: Characteristic L-shell x rays of the five rare earths Pr, Sm, Eu, Gd, and Dy were studied in this work. The x rays were produced by ionization from 0.3 to 2.0 MeV protons from the 2.0 MV Van de Graaff at North Texas State University. Total L-shell ionization and x-ray production cross sections were measured for Sm and compared to the BEA, CBEA and PWBA theories. Total L-shell ionization cross sections were measured for Pr, Eu, Gd, and Dy and compared to the BEA, CBEA, and PWBA. The CBEA and PWBA fit the samarium data well for both ionization and x-ray production cross sections. The BEA was generally 40 per cent lower than the data. The CBEA and the PWBA also fit the ionization cross section data for Pr, Eu, Gd and Dy, while the BEA was generally 40 per cent lower than the data.
Date: August 1974
Creator: Abrath, Frederick G.
Partner: UNT Libraries

Perturbation of renewal processes

Description: Renewal theory began development in the early 1940s, as the need for it in the industrial engineering sub-discipline operations research had risen. In time, the theory found applications in many stochastic processes. In this thesis I investigated the effect of seasonal effects on Poisson and non-Poisson renewal processes in the form of perturbations. It was determined that the statistical analysis methods developed at UNT Center for Nonlinear Science can be used to detect the effects of seasonality on the data obtained from Poisson/non-Poisson renewal systems. It is proved that a perturbed Poisson process can serve as a paradigmatic model for a case where seasonality is correlated to the noise and that diffusion entropy method can be utilized in revealing this relation. A renewal model making a connection with the stochastic resonance phenomena is used to analyze a previous neurological experiment, and it was shown that under the effect of a nonlinear perturbation, a non-Poisson system statistics may make a transition and end up in the of Poisson basin of statistics. I determine that nonlinear perturbation of the power index for a complex system will lead to a change in the complexity characteristics of the system, i.e., the system will reach a new form of complexity.
Date: May 2008
Creator: Akin, Osman Caglar
Partner: UNT Libraries

Structural and Photoelectron Emission Properties of Chemical Vapor Deposition Grown Diamond Films

Description: The effects of methane (CH4), diborone (B2H6) and nitrogen (N2) concentrations on the structure and photoelectron emission properties of chemical vapor deposition (CVD) polycrystalline diamond films were studied. The diamond films were grown on single-crystal Si substrates using the hot-tungsten filament CVD technique. Raman spectroscopy and x-ray photoelectron spectroscopy (XPS) were used to characterize the different forms of carbon in the films, and the fraction of sp3 carbon to sp3 plus sp2 carbon at the surface of the films, respectively. Scanning electron microscopy (SEM) was used to characterize the surface morphology of the films. The photoelectron emission properties were determined by measuring the energy distributions of photoemitted electrons using ultraviolet photoelectron spectroscopy (UPS), and by measuring the photoelectric current as a function of incident photon energy.
Date: August 1998
Creator: Akwani, Ikerionwu Asiegbu
Partner: UNT Libraries

Anomalous Behavior in the Rotational Spectra of the v₈=2 and the v₈=3 Vibrations for the ¹³C and ¹⁵N Tagged Isotopes of the CH₃CN Molecule in the Frequency Range 17-95 GHz

Description: The rotational microwave spectra of the three isotopes (^13CH_3^12C^15N, ^12CH_3^13C^15N, and ^13CH_3^13C^15N) of the methyl cyanide molecule in the v_8=3, v_8=2, v_7=1 and v_4=1 vibrational energy levels for the rotational components 1£J£5 (for a range of frequency 17-95 GHz.) were experimentally and theoretically examined. Rotational components in each vibration were measured to determine the mutual interactions in each vibration between any of the vibrational levels investigated. The method of isotopic substitution was employed for internal tuning of each vibrational level by single and double substitution of ^13C in the two sites of the molecule. It was found that relative frequencies within each vibration with respect to another vibration were shifted in a systematic way. The results given in this work were interpreted on the basis of these energy shifts. Large departure between experimentally measured and theoretically predicted frequency for the quantum sets (J, K=±l, ϑ=±1), Kϑ-l in the v_8=3 vibrational states for the ^13c and ^15N tagged isotopes of CH_3CN showed anomalous behavior which was explained as being due to Fermi resonance. Accidently strong resonances (ASR) were introduced to account for some departures which were not explained by Fermi resonance.
Date: December 1990
Creator: Al-Share, Mohammad A. (Mohammad Abdel)
Partner: UNT Libraries

Synchronous Chaos, Chaotic Walks, and Characterization of Chaotic States by Lyapunov Spectra

Description: Four aspects of the dynamics of continuous-time dynamical systems are studied in this work. The relationship between the Lyapunov exponents of the original system and the Lyapunov exponents of induced Poincare maps is examined. The behavior of these Poincare maps as discriminators of chaos from noise is explored, and the possible Poissonian statistics generated at rarely visited surfaces are studied.
Date: August 1993
Creator: Albert, Gerald (Gerald Lachian)
Partner: UNT Libraries

Model for Long-range Correlations in DNA Sequences

Description: We address the problem of the DNA sequences developing a "dynamical" method based on the assumption that the statistical properties of DNA paths are determined by the joint action of two processes, one deterministic, with long-range correlations, and the other random and delta correlated. The generator of the deterministic evolution is a nonlinear map, belonging to a class of maps recently tailored to mimic the processes of weak chaos responsible for the birth of anomalous diffusion. It is assumed that the deterministic process corresponds to unknown biological rules which determine the DNA path, whereas the noise mimics the influence of an infinite-dimensional environment on the biological process under study. We prove that the resulting diffusion process, if the effect of the random process is neglected, is an a-stable Levy process with 1 < a < 2. We also show that, if the diffusion process is determined by the joint action of the deterministic and the random process, the correlation effects of the "deterministic dynamics" are cancelled on the short-range scale, but show up in the long-range one. We denote our prescription to generate statistical sequences as the Copying Mistake Map (CMM). We carry out our analysis of several DNA sequences, and of their CMM realizations, with a variety of techniques, and we especially focus on a method of regression to equilibrium, which we call the Onsager Analysis. With these techniques we establish the statistical equivalence of the real DNA sequences with their CMM realizations. We show that long-range correlations are present in exons as well as in introns, but are difficult to detect, since the exon "dynamics" is shown to be determined by theentaglement of three distinct and independent CMM's. Finally we study the validity of the stationary assumption in DNA sequences and we discuss a biological model for the ...
Date: December 1996
Creator: Allegrini, Paolo
Partner: UNT Libraries

Studying Interactions of Gas Molecules with Nanomaterials Loaded in a Microwave Resonant Cavity

Description: A resonant cavity operating in TE011 mode was used to study the adsorption response of single walled carbon nanotubes (SWCNTs) and other nanomaterials for different types of gas molecules. The range of the frequency signal as a probe was chosen as geometry dependent range between 9.1 -9.8 GHz. A highly specific range can be studied for further experiments dependent on the type of molecule being investigated. It was found that for different pressures of gases and for different types of nanomaterials, there was a different response in the shifts of the probe signal for each cycle of gassing and degassing of the cavity. This dissertation suggests that microwave spectroscopy of a complex medium of gases and carbon nanotubes can be used as a highly sensitive technique to determine the complex dielectric response of different polar as well as non-polar gases when subjected to intense electromagnetic fields within the cavity. Also, as part of the experimental work, a range of other micro-porous materials was tested using the residual gas analysis (RGA) technique to determine their intrinsic absorption/adsorption characteristics when under an ultra-high vacuum environment. The scientific results obtained from this investigation, led to the development of a chemical biological sensor prototype. The method proposed is to develop operational sensors to detect toxin gases for homeland security applications and also develop sniffers to detect toxin drugs for law enforcement agency personnel.
Date: August 2007
Creator: Anand, Aman
Partner: UNT Libraries

Non-Poissonian statistics, aging and "blinking'" quantum dots.

Description: This dissertation addresses the delicate problem of aging in complex systems characterized by non-Poissonian statistics. With reference to a generic two-states system interacting with a bath it is shown that to properly describe the evolution of such a system within the formalism of the continuous time random walk (CTRW), it has to be taken into account that, if the system is prepared at time t=0 and the observation of the system starts at a later time ta>0, the distribution of the first sojourn times in each of the two states depends on ta, the age of the system. It is shown that this aging property in the fractional derivative formalism forces to introduce a fractional index depending on time. It is shown also that, when a stationary condition exists, the Onsager regression principle is fulfilled only if the system is aged and consequently if an infinitely aged distribution for the first sojourn times is adopted in the CTRW formalism used to describe the system itself. This dissertation, as final result, shows how to extend to the non-Poisson case the Kubo Anderson (KA) lineshape theory, so as to turn it into a theoretical tool adequate to describe the time evolution of the absorption and emission spectra of CdSe quantum dots. The fluorescence emission of these single nanocrystals exhibits interesting intermittent behavior, namely, a sequence of "light on" and "light off" states, departing from Poisson statistics. Taking aging into account an exact analytical treatment is derived to calculate the spectrum. In the regime fitting experimental data this final result implies that the spectrum of the "blinking" quantum dots must age forever.
Date: August 2004
Creator: Aquino, Gerardo
Partner: UNT Libraries

Z1 Dependence of Ion-Induced Electron Emission

Description: Knowledge of the atomic number (Zt) dependence of ion-induced electron emission yields (Y) can be the basis for a general understanding of ion-atom interaction phenomena and, in particular, for the design of Zrsensitive detectors that could be useful, for example, in the separation of isobars in accelerator mass spectrometry. The Zx dependence of ion-induced electron emission yields has been investigated using heavy ions of identical velocity (v = 2 v0, with v0 as the Bohr velocity) incident in a normal direction on sputter-cleaned carbon foils. Yields measured in this work plotted as a function of the ion's atomic number reveal an oscillatory behavior with pronounced maxima and minima. This nonmonotonic dependence of the yield on Zx will be discussed in the light of existing theories.
Date: December 1993
Creator: Arrale, Abdikarim M. (Abdikarim Mohamed)
Partner: UNT Libraries

EEG, Alpha Waves and Coherence

Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable y(t) is determined by a Langevin equation perturbed by a periodic process that in this time representation is hardly distinguishable from an erratic process. We show that the representation of this random process in the experimental time scale is characterized by a surprisingly extended coherence. We show that this model generates a sequence of damped oscillations with a time behavior that is remarkably similar to that derived from the analysis of real EEG's. The main result of this research work is that the existence of crucial events is not incompatible with the alpha wave coherence. In addition to this important ...
Date: May 2010
Creator: Ascolani, Gianluca
Partner: UNT Libraries

Charge State Dependence of L-Shell X-Ray Production Cross Sections of ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Energetic Oxygen Ions

Description: Charge state dependence of L-shell x-ray production cross sections have been measured for 4-14 MeV ¹⁶O^q (q=3⁺-8⁺) ions incident on ultra-clean, ultra-thin copper, and for 12 MeV ¹⁶O^q (q=3⁺-8⁺) on nickel, zinc, gallium and germanium solid foils. L-shell x-ray production cross section were measured using target foils of thickness ≤0.6 μg/cm² evaporated onto 5 μg/cm² carbon backings. Oxygen ions at MeV energies and charge state q were produced using a 3MV 9SDH-2 National Electrostatics Corporation tandem Pelletron accelerator. Different charge states, with and without K-vacancies, were produced using a post acceleration nitrogen striping gas cell or ¹²C stripping foils. L-shell x-rays from ultra-thin ₂₈Ni, ₂₉Cu,₃₀Zn,₃₁Ga, and ₃₂Ge targets were measured using a Si(Li) x-ray detector with a FWHM resolution of 135 eV at 5.9 keV. The scattered projectiles were detected simultaneously by means of silicon surface barrier detectors at angle of 45° and 169° with respect to the beam direction. The electron capture (EC) as well as direct ionization (DI) contributions were determined from the projectile charge state dependence of the target x-ray production cross sections under single collision conditions. The present work was undertaken to expand the measurements of L-shell x-ray production cross sections upon selected elements with low L-shell binding energies by energetic ¹⁶O^q (q=3⁺,4⁺,5⁺,6⁺,7⁺,8⁺) incident ions. Collision systems chosen for this work have sufficiently large Z₁/Z₂ ratios (0.25-0.28) so that EC may noticeably contribute to the x-ray production enhancement. In this region, reliable experimental data are particularly scarce, thus, fundamental work in this area is still necessary. DI and EC cross section measurements were compared with the ECPSSR and the first Born theories over the range of 0.25 <Z₁/Z₂ < 0.29 and 0.38 < v₁/v₂_L <0.72. The ECPSSR theoretical predictions (including DI and EC) are in closer agreement with the data than the first Born's.
Date: August 1996
Creator: Azordegan, Amir R. (Amir Reza)
Partner: UNT Libraries

The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

Description: We show that the nonadditive open systems can be studied in a consistent manner by using a generalized version of S-theorem. This new generalized S-theorem can further be considered as an indication of self-organization in nonadditive open systems as prescribed by Haken. The nonadditive S-theorem is then illustrated by using the modified Van der Pol oscillator. Finally, Tsallis entropy as an equilibrium entropy is studied by using Boltzmann's method of orthodes. This part of dissertation shows that Tsallis ensemble is on equal footing with the microcanonical, canonical and grand canonical ensembles. However, the associated entropy turns out to be Renyi entropy.
Date: August 2008
Creator: Bagci, Gokhan Baris
Partner: UNT Libraries

Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Description: This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-binding model. Calculations were within second-order Born-approximation to second-order in disorder parameters. An analytical expression for localization length as a functional of correlations in potentials was found. Anderson localization in DNA molecules were studied in single-channel wire and two-channel models for electron transport in DNA. In both of the models, some DNA sequences exhibited delocalized electron states in their energy spectrum. Studies with two-channel wire model for DNA yielded important link between electron localization properties and genetic information.
Date: December 2007
Creator: Bagci, V. M. Kemal
Partner: UNT Libraries

Computational Studies of Selected Ruthenium Catalysis Reactions.

Description: Computational techniques were employed to investigate pathways that would improve the properties and characteristics of transition metal (i.e., ruthenium) catalysts, and to explore their mechanisms. The studied catalytic pathways are particularly relevant to catalytic hydroarylation of olefins. These processes involved the +2 to +3 oxidation of ruthenium and its effect on ruthenium-carbon bond strengths, carbon-hydrogen bond activation by 1,2-addition/reductive elimination pathways appropriate to catalytic hydrogen/deuterium exchange, and the possible intermediacy of highly coordinatively unsaturated (e.g., 14-electron) ruthenium complexes in catalysis. The calculations indicate a significant decrease in the Ru-CH3 homolytic bond dissociation enthalpy for the oxidation of TpRu(CO)(NCMe)(Me) to its RuIII cation through both reactant destabilization and product stabilization. This oxidation can thus lead to the olefin polymerization observed by Gunnoe and coworkers, since weak RuIII-C bonds would afford quick access to alkyl radical species. Calculations support the experimental proposal of a mechanism for catalytic hydrogen/deuterium exchange by a RuII-OH catalyst. Furthermore, calculational investigations reveal a probable pathway for the activation of C-H bonds that involves phosphine loss, 1,2-addition to the Ru-OH bond and then reversal of these steps with deuterium to incorporate it into the substrate. The presented results offer the indication for the net addition of aromatic C-H bonds across a RuII-OH bond in a process that although thermodynamically unfavorable is kinetically accessible. Calculations support experimental proposals as to the possibility of binding of weakly coordinating ligands such as dinitrogen, methylene chloride and fluorobenzene to the "14-electron" complex [(PCP)Ru(CO)]+ in preference to the formation of agostic Ru-H-C interactions. Reactions of [(PCP)Ru(CO)(1-ClCH2Cl)][BAr'4] with N2CHPh or phenylacetylene yielded conversions that are exothermic to both terminal carbenes and vinylidenes, respectively, and then bridging isomers of these by C-C bond formation resulting from insertion into the Ru-Cipso bond of the phenyl ring of PCP. The QM/MM and DFT calculations on full complexes ...
Date: December 2007
Creator: Barakat, Khaldoon A.
Partner: UNT Libraries

Fractional Calculus and Dynamic Approach to Complexity

Description: Fractional calculus enables the possibility of using real number powers or complex number powers of the differentiation operator. The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation for a fractional trajectory, that being an average over an ensemble of stochastic trajectories. With an ensemble average perspective, the explanation of the behavior of fractional chaotic systems changes dramatically. Before now what has been interpreted as intrinsic friction is actually a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. Nonlinear Langevin equation describes the mean field of a finite size complex network at criticality. Critical phenomena and temporal complexity are two very important issues of modern nonlinear dynamics and the link between them found by the author can significantly improve the understanding behavior of dynamical systems at criticality. The subject of temporal complexity addresses the challenging and especially helpful in addressing fundamental physical science issues beyond the limits of reductionism.
Date: December 2015
Creator: Beig, Mirza Tanweer Ahmad
Partner: UNT Libraries

Work Function Study of Iridium Oxide and Molybdenum Using UPS and Simultaneous Fowler-Nordheim I-V Plots with Field Emission Energy Distributions

Description: The characterization of work functions and field emission stability for molybdenum and iridium oxide coatings was examined. Single emission tips and flat samples of molybdenum and iridium oxide were prepared for characterization. The flat samples were characterized using X-ray Photoelectron Spectroscopy and X-ray diffraction to determine elemental composition, chemical shift, and crystal structure. Flat coatings of iridium oxide were also scanned by Atomic Force Microscopy to examine topography. Work functions were characterized by Ultraviolet Photoelectron Spectroscopy from the flat samples and by Field Emission Electron Distributions from the field emission tips. Field emission characterization was conducted in a custom build analytical chamber capable of measuring Field Emission Electron Distribution and Fowler-Nordheim I-V plots simultaneously to independently evaluate geometric and work function changes. Scanning Electron Microscope pictures were taken of the emission tips before and after field emission characterization to confirm geometric changes. Measurement of emission stability and work functions were the emphasis of this research. In addition, use of iridium oxide coatings to enhance emission stability was evaluated. Molybdenum and iridium oxide, IrO2, were characterized and found to have a work function of 4.6 eV and 4.2 eV by both characterization techniques, with the molybdenum value in agreement with previous research. The analytic chamber used in the field emission analysis demonstrated the ability to independently determine the value and changes in work function and emitter geometry by simultaneous measurement of the Field Emission Energy Distribution and Fowler-Nordheim I-V plots from single emitters. Iridium oxide coating was found to enhance the stability of molybdenum emission tips with a relatively low work function of 4.2 eV and inhibited the formation of high work function molybdenum oxides. However, the method of deposition of iridium and annealing in oxygen to form iridium oxide on molybdenum emitters left rather severe cracking in the protective oxide ...
Date: August 1999
Creator: Bernhard, John Michael
Partner: UNT Libraries

Carbon K-Shell X-Ray and Auger-Electron Cross Sections and Fluorescence Yields for Selected Molecular Gases by 0.6 To 2 .0 MeV Proton Impact

Description: Absolute K-shell x-ray cross sections and Auger-electron cross sections are measured for carbon for 0.6 to 2.0 MeV proton incident on CH₄, n-C₄H₁₀ (n-Butane), i-C₄H₁₀ (isobutane), C₆H₆ (Benzene), C₂H₂ (Acetylene), CO and CO₂. Carbon K-shell fluorescence yields are calculated from the measurements of x-ray and Auger-electron cross sections. X-ray cross sections are measured using a variable geometry end window proportional counter. An alternate method is described for the measurement of the transmission of the proportional counter window. Auger electrons are detected by using a constant transmission energy Π/4 parallel pi ate electrostatic analyzer. Absolute carbon K-shell x-ray cross sections for CH₄ are compared to the known results of Khan et al. (1965). Auger-electron cross sections for proton impact on CH₄ are compared to the known experimental values of RΦdbro et al. (1979), and to the theoretical predictions of the first Born and ECPSSR. The data is in good agreement with both the first Born and ECPSSR, and within our experimental uncertainties with the measurements of RΦdbro et al. The x-ray cross sections, Auger-electron cross sections and fluorescence yields are plotted as a function of the Pauling charge, and show significant variations. These changes in the x-ray cross sections are compared to a model based on the number of electrons present in the 2s and 2p sub shells of these carbon based molecules. The changes in the Auger-electron cross sections are compared to the calculations of Matthews and Hopkins. The variation in the fluorescence yield is explained on the basis of the multiconfiguration Dirac-Fock model.
Date: August 1986
Creator: Bhalla, Raj P. (Raj Pal), 1948
Partner: UNT Libraries

Complexity as Aging Non-Poisson Renewal Processes

Description: The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter involved, can generate the same macroscopic outcome, namely an inverse power law distribution density of events occurrence. To solve this ambiguity, a numerical instrument, based on the theoretical analysis of the aging properties of renewal systems, is introduced. The application of this method, called renewal aging experiment, allows us to distinguish if a time series has been generated by a renewal or a modulation process. This method of analysis is then applied to several physical systems, from blinking quantum dots, to the human brain activity, to seismic fluctuations. Theoretical conclusions about the underlying nature of the considered complex systems are drawn.
Date: May 2007
Creator: Bianco, Simone
Partner: UNT Libraries