UNT Theses and Dissertations - 72 Matching Results

Search Results

Molecular Dynamics Simulations of the Structure and Properties of Boron Containing Oxide Glasses: Empirical Potential Development and Applications

Description: Potential parameters that can handle multi-component oxide glass systems especially boron oxide are very limited in literature. One of the main goals of my dissertation is to develop empirical potentials to simulate multi-component oxide glass systems with boron oxide. Two approaches, both by introducing the composition dependent parameter feature, were taken and both led to successful potentials for boron containing glass systems after extensive testing and fitting. Both potential sets can produce reasonable glass structures of the multi-component oxide glass systems, with structure and properties in good agreement with experimental data. Furthermore, we have tested the simulation settings such as system size and cooling rate effects on the results of structures and properties of MD simulated borosilicate glasses. It was found that increase four-coordinated boron with decreasing cooling rate and system size above 1000 atoms is necessary to produce converged structure. Another application of the potentials is to simulate a six-component nuclear waste glass, international simple glass (ISG), which was for first time simulated using the newly developed parameters. Structural features obtained from simulations agree well with the experimental results. In addition, two series of sodium borosilicate and boroaluminosilicate glasses were simulated with the two sets of potentials to compare and evaluate their applicability and deficiency. Various analyses on the structures and properties such as pair distribution function, total correlation function, coordination number analysis, Qn distribution function, ring size distribution function, vibrational density of states and mechanical properties were performed. This work highlights the challenge of MD simulations of boron containing glasses and the capability of the new potential parameters that enable simulations of wide range of mixed former glasses to investigate new structure features and design of new glass compositions for various applications.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Deng, Lu
Partner: UNT Libraries

Modeling of High Strain Rate Compression of Austenitic Shape Memory Alloys

Description: Shape memory alloys (SMAs) exhibit the ability to absorb large dynamic loads and, therefore, are excellent candidates for structural components where impact loading is expected. Compared to the large amount of research on the shape memory effect and/or pseudoelasticity of polycrystalline SMAs under quasi-static loading conditions, studies on dynamic loading are limited. Experimental research shows an apparent difference between the quasi-static and high strain rate deformation of SMAs. Research reveals that the martensitic phase transformation is strain rate sensitive. The mechanism for the martensitic phase transformation in SMAs during high strain rate deformation is still unclear. Many of the existing high strain rate models assume that the latent heat generated during deformation contributes to the change in the stress-strain behavior during dynamic loading, which is insufficient to explain the large stress observed during phase transformation under high strain rate deformation. Meanwhile, the relationship between the phase front velocity and strain rate has been studied. In this dissertation, a new resistance to phase transformation during high strain rate deformation is discussed and the relationship between the driving force for phase transformation and phase front velocity is established. With consideration of the newly defined resistance to phase transformation, a new model for phase transformation of SMAs during high strain rate deformation is presented and validated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this dissertation presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and ...
Date: December 2017
Creator: Yu, Hao
Partner: UNT Libraries

Three-Dimensional Carbon Nanostructure and Molybdenum Disulfide (MoS2) for High Performance Electrochemical Energy Storage Devices

Description: My work presents a novel approach to fabricate binder free three-dimensional carbon nanotubes/sulfur (3DCNTs/S) hybrid composite by a facile and scalable method increasing the loading amount from 1.86 to 8.33 mg/cm2 highest reported to date with excellent electrochemical performance exhibiting maximum specific energy of ~1233Wh/kg and specific power of ~476W/kg, with respect to the mass of the cathode. Such an excellent performance is attributed to the fact that 3DCNTs offers higher loading amount of sulfur, and confine polysulfide within the structure. In second part of the thesis, molybdenum disulfide (MoS2) is typically studied for three electrochemical energy storage devices including supercapacitors, Li-ion batteries, and hybrid Li-ion capacitors. The intrinsic sheet like morphology of MoS2 provides high surface area for double layer charge storage and a layered structure for efficient intercalation of H+/ Li+ ions. My work demonstrates the electrochemical analysis of MoS2 grown on different substrates including copper (conducting), and carbon nanotubes. MoS2 film on copper was investigated as a supercapacitor electrode in three electrode system exhibiting excellent volumetric capacitance of ~330F/cm3 along with high volumetric power and energy density in the range of 40-80 W/cm3 and 1.6-2.4 mWh/cm3, respectively. Furthermore, we have developed novel binder-free 3DCNTs/ MoS2 as an anode materials in half cell Li-ion batteries. The vertically oriented morphology of MoS2 offers high surface area and active electrochemical sites for efficient intercalation of Li+ ions and demonstrating excellent electrochemical performance with high specific capacity and cycling stability. This 3DCNTs/ MoS2 anode was coupled with high surface area southern yellow pine derived activated carbon (SYAC) cathode to obtain hybrid 3DCNTs/ MoS2 || SYAC Li-ion capacitor (LIC), which delivers large operating voltage window of 1-4.0V with excellent cycling stability exhibiting capacitance retention of ~80% after 5000 cycles.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Patel, Mumukshu D
Partner: UNT Libraries

Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys

Description: In this study, the surface degradation behavior was studied for typical examples from bulk metallic glasses (BMGs), metallic glass composites (MGCs) and high entropy alloys (HEAs) alloy systems that are of scientific and commercial interest. The corrosion and wear behavior of two Zr-based bulk metallic glasses, Zr41.2Cu12.5Ni10Ti13.8Be22.5 and Zr57Cu15.4Ni12.6Al10Nb5, were evaluated in as-cast and thermally relaxed states. Significant improvement in corrosion rate, wear behavior, and friction coefficient was seen for both the alloys after thermal relaxation. Fully amorphous structure was retained with thermal relaxation below the glass transition temperature. This improvement in surface properties was explained by annihilation of free volume, the atomic scale defects in amorphous metals resulting from kinetic freezing. Recently developed MGCs, with in situ crystalline ductile phase, demonstrate a combination of mechanical properties and fracture behavior unseen in known structural metals. The composites showed higher wear rates but lower coefficient of friction compared to monolithic amorphous glasses. No tribolayer formation was seen for the composites in sharp contrast to that of the monolithic metallic glasses. Corrosion was evaluated by open circuit potential (OCP) analysis and potentiodynamic polarization. Site-specific corrosion behavior was studied by scanning vibration electrode technique (SVET) to identify formation of galvanic couples. Scanning kelvin probe microscope was used to map elecropositivity difference between the phases and linked to wear/corrosion behavior. Phases with higher elecropositivity were more susceptible to surface degradation. Wear and corrosion synergy in marine environment was evaluated for two high entropy alloys (HEAs), CoCrFeMnNi and Al0.1CoCrFeNi. Between the two alloys, Al0.1CoCrFeNi showed better wear resistance compared to CoCrFeMnNi in dry and marine conditions due to quicker passivation, a higher magnitude of polarization resistance and significantly larger pitting resistance.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2017
Creator: Ayyagari, Venkata A
Partner: UNT Libraries

Non-Isothermal Laser Treatment of Fe-Si-B Metallic Glass

Description: Metallic glasses possess attractive properties, such as high strength, good corrosion resistance, and superior soft magnetic performance. They also serve as precursors for synthesizing nanocrystalline materials. In addition, a new class of composites having crystalline phases embedded in amorphous matrix is evolving based on selective crystallization of metallic glasses. Therefore, crystallization of metallic glasses and its effects on properties has been a subject of interest. Previous investigations from our research group related to laser assisted crystallization of Fe-Si-B metallic glass (an excellent soft magnetic material by itself) showed a further improvement in soft magnetic performance. However, a fundamental understanding of crystallization and mechanical performance of laser treated metallic glass was essential from application point of view. In light of this, the current work employed an integrated experimental and computational approach to understand crystallization and its effects on tensile behavior of laser treated Fe-Si-B metallic glass. The time temperature cycles during laser treatments were predicted using a finite element thermal model. Structural changes in laser treated Fe-Si-B metallic glass including crystallization and phase evolution were investigated with the aid of X-ray diffraction, differential scanning calorimetry, resistivity measurements, and transmission electron microscopy. The mechanical behavior was evaluated by uniaxial tensile tests with an InstronTM universal testing machine. Fracture surfaces of the metallic glass were observed using scanning electron microscopy and site specific transmission electron microscopy. Fe-Si-B metallic glass samples treated with lower laser fluence (<0.49 J/mm2) underwent structural relaxation while higher laser flounces led to partial crystallization. The crystallization temperature experienced an upward shift due to rapid heating rates of the order of 104 K/s during laser treatments. The heating cycle was followed by termination of laser upon treatment attainment of peak temperature and rapid cooling of the similar order. Such dynamic effects resulted in premature arrest of the crystallite growth leading ...
Date: December 2017
Creator: Joshi, Sameehan Shrikant
Partner: UNT Libraries

Developing Precipitation Hardenable High Entropy Alloys

Description: High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al1.5CrCuFeNi2 over a length of ~25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi (3% Al (at%)) to Al0.3CoCrFeNi. (7% Al (at%)). Furthermore, Al addition leads to the precipitation of highly refined ordered L12 (γ′) and B2 precipitates in ...
Date: August 2017
Creator: Gwalani, Bharat
Partner: UNT Libraries

Evolution of Precipitates and Their Influence on the Mechanical Properties of β-Titanium Alloys

Description: Over the last few decades, body-centered-cubic (bcc) beta (β) titanium alloys have largely been exploited as structural alloys owing to the richness in their microstructural features. These features, which lead to a unique combination of high specific strength and ductility, excellent hardenability, good fatigue performance, and corrosion resistance, make these alloys viable candidates for many applications, including aerospace, automobile, and orthopedic implants. The mechanical properties of these alloys strongly depend on the various phases present; which can be controlled by thermomechanical treatments and/or alloy design. The two most important and studied phases are the metastable ω phase and the stable α phase. The present study focuses on the microstructural evolution and the mechanical behavior of these two phases in a model β-Ti alloy, binary Ti-12wt. %Mo alloy, and a commercial β-Ti alloy, β-21S. Microstructures containing athermal and isothermal ω phases in the binary Ti-12wt. %Mo alloy are obtained under specific accurate temperature controlled heat treatments. The formation and the evolution of the ω-phase based microstructures are investigated in detail via various characterization techniques such as SEM, TEM, and 3D atom probe tomography. The mechanical behavior was investigated via quasi-static tensile loading; at room and elevated temperatures. The effect of β phase stability on the deformation behavior is then discussed. Similar to the Ti-12wt. %Mo, the formation and the evolution of the athermal and isothermal ω phases in the commercial β-21S alloy was studied under controlled heat treatments. The structural and compositional changes were tracked using SEM, TEM, HR-STEM, and 3D atom probe tomography (3D-APT). The presence of additional elements in the commercial alloy were noted to make a considerable difference in the evolution and morphology of the ω phase and also the mechanical behavior of the alloys. The Portevin-Le Chatelier (PLC) like effect was observed in iii this alloy at ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2017
Creator: Mantri, Srinivas Aditya
Partner: UNT Libraries

Structure Evolution and Nano-Mechanical Behavior of Bulk Metallic Glasses and Multi-Principal Element Alloys

Description: Bulk metallic glasses and multi-principal element alloys represent relatively new classes of multi-component engineering materials designed for satisfying multiple functionalities simultaneously. Correlating the microstructure with mechanical behavior (at the microstructural length-scales) in these materials is key to understanding their performance. In this study, the structure evolution and nano-mechanical behavior of these two classes of materials was investigated with the objective of fundamental scientific understanding of their properties. The structure evolution, high temperature nano-mechanical behavior, and creep of two Zr-based alloys was studied: Zr41.2Ti13.8Cu12.5Ni10.0Be22 (Vitreloy1) and Zr52.5Ti5Cu17.9Ni14.6All0 (Vitreloy105). Devitrification was found to proceed via the formation of a metastable icosahedral phase with five-fold symmetry. The deformation mechanism changes from inhomogeneous or serrated flow to homogenous flow near 0.9Tg, where Tg is the glass transition temperature. The creep activation energy for Vitreloy1 and Vitreloy105 were 144 kJ/mol and 125 kJ/mol, respectively in the range of room temperature to 0.75Tg. The apparent activation energy increased drastically to 192 kJ/mol for Vitreloy1 and 215 kJ/mol for Vitreloy105 in the range of 0.9Tg to Tg, indicating a change in creep mechanism. Structure evolution in catalytic amorphous alloys, Pt57.5Cu14.7Ni5.3P22.5 and Pd43Cu27Ni10P20, was studied using 3D atom probe tomography and elemental segregation between different phases and the interface characteristics were identified. The structure evolution of three multi-principal element alloys were investigated namely CoCrNi, CoCrFeMnNi, and Al0.1CoCrFeNi. All three alloys formed a single-phase FCC structure in as-cast, cold worked and recrystallized state. No secondary phases precipitated after prolonged heat treatment or mechanical working. The multi-principal element alloys showed less strain gradient plasticity compared to pure metals like Ni during nano-indentation. This was attributed to the highly distorted lattice which resulted in lesser density of geometrically necessary dislocations (GNDs). Dislocation nucleation was studied by low load indentation along with the evaluation of activation volume and activation energy. This was ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Mridha, Sanghita
Partner: UNT Libraries

Exceptional Properties in Friction Stir Processed Beta Titanium Alloys and an Ultra High Strength Steel

Description: The penchant towards development of high performance materials for light weighting engineering systems through various thermomechanical processing routes has been soaring vigorously. Friction stir processing (FSP) - a relatively new thermomechanical processing route had shown an excellent promise towards microstructural modification in many Al and Mg alloy systems. Nevertheless, the expansion of this process to high temperature materials like titanium alloys and steels is restricted by the limited availability of tool materials. Despite it challenges, the current thesis sets a tone for the usage of FSP to tailor the mechanical properties in titanium alloys and steels. FSP was carried out on three near beta titanium alloys, namely Ti6246, Ti185 and Tiβc with increasing β stability index, using various tool rotation rates and at a constant tool traverse speed. Microstructure and mechanical property relationship was studied using experimental techniques such as SEM, TEM, mini tensile testing and synchrotron x-ray diffraction. Two step aging on Ti6246 had resulted in an UTS of 2.2GPa and a specific strength around 500 MPa m3/mg, which is about 40% greater than any commercially available metallic material. Similarly, FSP on an ultra-high strength steel―Eglin steel had resulted in a strength greater than 2GPa with a ductility close to 10% at around 4mm from the top surface of stir zone (SZ). Experimental techniques such as microhardness, mini-tensile testing and SEM were used to correlate the microstructure and properties observed inside SZ and HAZ's of the processed region. A 3D temperature modeling was used to predict the peak temperature and cooling rates during FSP. The exceptional strength ductility combinations inside the SZ is believed to be because of mixed microstructure comprised of various volume fractions of phases such as martensite, bainite and retained austenite.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Tungala, Vedavyas
Partner: UNT Libraries

Microstructural Evolution and Mechanical Response of Materials by Design and Modeling

Description: Mechanical properties of structural materials are highly correlated to their microstructure. The relationship between microstructure and mechanical properties can be established experimentally. The growing need for structural materials in industry promotes the study of microstructural evolution of materials by design using computational approaches. This thesis presents the microstructural evolution of two different structural materials. The first uses a genetic algorithm approach to study the microstructural evolution of a high-temperature nickel-based oxide-dispersion-strengthened (ODS) alloy. The chosen Ni-20Cr ODS system has nano Y2O3 particles for dispersion strengthening and submicron Al2O3 for composite strengthening. Synergistic effects through the interaction of small dispersoids and large reinforcements improved high-temperature strength. Optimization considered different weight factors on low temperature strength, ductility, and high temperature strength. Simulation revealed optimal size and volume fraction of dispersoids and reinforced particles. Ni-20Cr-based alloys were developed via mechanical alloying for computational optimization and validation. The Ni-20Cr-1.2Y2O3-5Al2O3 alloy exhibited significant reduction in the minimum creep rate (on the order of 10-9 s-1) at 800oC and 100 MPa. The second considers the microstructural evolution of AA 7050 alloy during friction stir welding (FSW). Modeling the FSW process includes thermal, material flow, microstructural and strength modeling. Three-dimensional material flow and heat transfer model was developed for friction stir welding process of AA 7050 alloy to predict thermal histories and extent of deformation. Peak temperature decreases with the decrease in traverse speed at constant advance per revolution, while the increase in tool rotation rate enhances peak temperature. Shear strain is higher than the longitudinal and transverse strain for lower traverse speed and tool rotation rate; whereas for higher traverse speed and tool rotation rate, shear and normal strain acquire similar values. Precipitation distribution simulation using TC-PRISMA predicts the presence of η' and η in the as-received AA 7050-T7451 alloy and mostly η in the friction ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2017
Creator: Dutt, Aniket Kumar
Partner: UNT Libraries

Design Principle on Carbon Nanomaterials Electrocatalysts for Energy Storage and Conversion

Description: We are facing an energy crisis because of the limitation of the fossil fuel and the pollution caused by burning it. Clean energy technologies, such as fuel cells and metal-air batteries, are studied extensively because of this high efficiency and less pollution. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential in the process of energy storage and conversion, and noble metals (e.g. Pt) are needed to catalyze the critical chemical reactions in these devices. Functionalized carbon nanomaterials such as heteroatom-doped and molecule-adsorbed graphene can be used as metal-free catalysts to replace the expensive and scarce platinum-based catalysts for the energy storage and conversion. Traditionally, experimental studies on the catalytic performance of carbon nanomaterials have been conducted extensively, however, there is a lack of computational studies to guide the experiments for rapid search for the best catalysts. In addition, theoretical mechanism and the rational design principle towards ORR and OER also need to be fully understood. In this dissertation, density functional theory calculations are performed to calculate the thermodynamic and electrochemical properties of heteroatom-doped graphene and molecule-adsorbed graphene for ORR and OER. Gibb's free energy, overpotential, charge transfer and edge effect are evaluated. The charge transfer analysis show the positive charges on the graphene surface caused by the heteroatom, hetero-edges and the adsorbed organic molecules play an essential role in improving the electrochemical properties of the carbon nanomaterials. Based on the calculations, design principles are introduced to rationally design and predict the electrochemical properties of doped graphene and molecule-adsorbed graphene as metal-free catalysts for ORR and OER. An intrinsic descriptor is discovered for the first time, which can be used as a materials parameter for rational design of the metal-free catalysts with carbon nanomaterials for energy storage and conversion. The success of the design principle provides a better ...
Date: May 2017
Creator: Zhao, Zhenghang
Partner: UNT Libraries

Microstructure for Enhanced Plasticity and Toughness

Description: Magnesium is the lightest metal with a very high specific strength. However, its practical applicability is limited by its toughness and reliability. Mg, being HCP has low ductility. This makes the improvement of toughness a grand challenge in Mg alloys. Friction stir processing (FSP) is a thermomechanical technique used to effect microstructural modification. Here, FSP was utilized to affect the toughness of WE43 sheets through microstructural modification. Room temperature Kahn-type tests were conducted to measure the toughness of WE43 sheets. Microscopic techniques (SEM, TEM) was utilized to study the effect of various microstructural factors like grain size, texture, constituent particles, precipitates on crack initiation and propagation. Tensile properties were evaluated by mini-tensile tests. Crack growth in WE43 sheets was also affected by mechanics and digital image correlation (DIC) was utilized to study the plastic zone size. The underlying mechanisms affecting toughness of these sheets were understood which will help in formulating ways in improving it. WE43 nanocomposites were fabricated via FSP. Uniform distribution of reinforcements was obtained in the composites. Improved mechanical properties like that of enhanced strength, increased hardness and stiffness were obtained. But contrary to other metal matrix composites which show reduction in ductility with incorporation of ceramic reinforcements, the nanocomposites showed good strength-ductility combination. The composites were precisely characterized and mechanisms governing this property were studied. The nano-length of the reinforcements was observed to be the main criteria and the dislocation-particle interaction, the main reason behind the strength-ductility property.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Das, Shamiparna
Partner: UNT Libraries

Friction Stir Welding of Precipitation Strengthened Aluminum 7449 Alloys

Description: The Al-Zn-Mg-Cu (7XXX series) alloys are amongst the strongest aluminum available. However, they are considered unweldable with conventional fusion techniques due to the negative effects that arise with conventional welding, including hydrogen porosity, hot cracking, and stress corrosion cracking. For this reason, friction stir welding has emerged as the preferred technique to weld 7XXX series alloys. Aluminum 7449 is one of the highest strength 7XXX series aluminum alloy. This is due to its higher zinc content, which leads to a higher volume fraction of eta' precipitates. It is typically used in a slight overaged condition since it exhibits better corrosion resistance. In this work, the welds of friction stir welded aluminum 7449 were studied extensively. Specific focus was placed in the heat affected zone (HAZ) and nugget. Thermocouples were used in the heat affected zone for three different depths to obtain thermal profiles as well as cooling/heating profiles. Vicker microhardness testing, transmission electron microscope (TEM), and differential scanning calorimeter (DSC) were used to characterize the welds. Two different tempers of the alloy were used, a low overaged temper and a high overaged temper. A thorough comparison of the two different tempers was done. It was found that highly overaged aluminum 7449 tempers show better properties for friction stir welding. A heat gradient along with a high conducting plate (Cu) used at the bottom of the run, resulted in welds with two separate microstructures in the nugget. Due to the microstructure at the bottom of the nugget, higher strength than the base metal is observed. Furthermore, the effects of natural aging and artificial aging were studied to understand re-precipitation. Large improvements in strength are observed after natural aging throughout the welds, including improvements in the HAZ.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Martinez, Nelson Y
Partner: UNT Libraries

In Vitro Behavior of AZ31B Mg-Hydroxyapatite Metallic Matrix Composite Surface Fabricated via Friction Stir Processing

Description: Magnesium and its alloys have been considered for load-bearing implant materials due to their similar mechanical properties to the natural bone, excellent biocompatibility, good bioactivity, and biodegradation. Nevertheless, the uncontrollable corrosion rate in biological environment restrains their application. Hydroxyapatite (HA, Ca10(PO4)6(OH)2) is a widely used bio-ceramic which has bone-like mineral structure for bone fixation. Poor fracture toughness of HA makes it not suitable for load-bearing application as a bulk. Thus, HA is introduced into metallic surface in various forms for improving biocompatibility. Recently friction stir processing (FSP) has emerged as a surface modification tool for surface/substrate grain refinement and homogenization of microstructure in biomaterial. In the pressent efforts, Mg-nHA composite surface on with 5-20 wt% HA on Mg substrate were fabricated by FSP for biodegradation and bioactivity study. The results of electrochemical measurement indicated that lower amount (~5% wt%) of Ca in Mg matrix can enhance surface localized corrosion resistance. The effects of microstructure,the presence of HA particle and Mg-Ca intermetallic phase precipitates on in vitro behavior of Mg alloy were investigated by TEM, SEM, EDX,XRD ,and XPS. The detailed observations will be discussed during presentation.
Date: August 2016
Creator: Ho, Yee Hsien
Partner: UNT Libraries

Friction Stir Welding of High Strength Precipitation Strengthened Aluminum Alloys

Description: Rising demand for improved fuel economy and structural efficiency are the key factors for use of aluminum alloys for light weighting in aerospace industries. Precipitation strengthened 2XXX and 7XXX aluminum alloys are the key aluminum alloys used extensively in aerospace industry. Welding and joining is the critical step in manufacturing of integrated structures. Joining of precipitation strengthened aluminum alloys using conventional fusion welding techniques is difficult and rather undesirable in as it produces dendritic microstructure and porosities which can undermine the structural integrity of weldments. Friction stir welding, invented in 1991, is a solid state joining technique inherently benefitted to reduces the possibility of common defects associated with fusion based welding techniques. Weldability of various 2XXX and 7XXX aluminum alloys via friction stir welding was investigated. Microstructural and mechanical property evolution during welding and after post weld heat treatment was studied using experimental techniques such as transmission electron microscopy, differential scanning calorimetry, hardness testing, and tensile testing. Various factors such as peak welding temperature, cooling rate, external cooling methods (thermal management) which affects the strength of the weldment were studied. Post weld heat treatment of AL-Mg-Li alloy produced joint as strong as the parent material. Modified post weld heat treatment in case of welding of Al-Zn-Mg alloy also resulted in near 100% joint efficiency whereas the maximum weld strength achieved in case of welds of Al-Cu-Li alloys was around 80-85% of parent material strength. Low dislocation density and high nucleation barrier for the precipitates was observed to be responsible for relatively low strength recovery in Al-Cu-Li alloys as compared to Al-Mg-Li and Al-Zn-Mg alloys.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Sidhar, Harpreet
Partner: UNT Libraries

Influence of High Strain Rate Compression on Microstructure and Phase Transformation of NiTi Shape Memory Alloys

Description: Since NiTi shape memory alloy (SMA) was discovered in the early 1960s, great progress has been made in understanding the properties and mechanisms of NiTi SMA and in developing associated products. For several decades, most of the scientific research and industrial interests on NiTi SMA has focused on its superelastic applications in the biomedical field and shape memory based “smart” devices, which involves the low strain rate (around 0.001 s^-1) response of NiTi SMA. Due to either stress-induced martensite phase transformation or stress induced martensite variant reorientation under the applied load, NiTi SMA has exhibited a high damping capacity in both austenitic and martensitic phase. Recently, there has been an increasing interest in exploitation of the high damping capacity of NiTi SMA to develop high strain rate related applications such as seismic damping elements and energy absorbing devices. However, a systematic study on the influence of strain, strain rate and temperature on the mechanical properties, phase transformation, microstructure and crystal structure is still limited, which leads to the difficulties in the design of products being subjected to high strain rate loading conditions. The four main objectives of the current research are: (1) achieve the single loading and the control of strain, constant strain rate and temperature in high strain rate compression tests of NiTi SMA specimens using Kolsky (split Hopkinson) compression bar; (2) explore the high strain rate compressive responses of NiTi SMA specimens as a function of strain (1.4%, 1.8%, 3.0%, 4.8%, and 9.6%), strain rate (400, 800 and 1200 s^-1), and temperature (room temperature (294 K) and 373 K); (3) characterize and compare the microstructure, phase transformation and crystal structure of NiTi SMAs before and after high strain rate compression; and (4) correlate high strain rate deformation with the changes of microstructure, phase transformation characteristics and crystal structure. ...
Date: May 2016
Creator: Qiu, Ying
Partner: UNT Libraries

Fatigue Behavior of A356 Aluminum Alloy

Description: Metal fatigue is a recurring problem for metallurgists and materials engineers, especially in structural applications. It has been responsible for many disastrous accidents and tragedies in history. Understanding the micro-mechanisms during cyclic deformation and combating fatigue failure has remained a grand challenge. Environmental effects, like temperature or a corrosive medium, further worsen and complicate the problem. Ultimate design against fatigue must come from a materials perspective with a fundamental understanding of the interaction of microstructural features with dislocations, under the influence of stress, temperature, and other factors. This research endeavors to contribute to the current understanding of the fatigue failure mechanisms. Cast aluminum alloys are susceptible to fatigue failure due to the presence of defects in the microstructure like casting porosities, non-metallic inclusions, non-uniform distribution of secondary phases, etc. Friction stir processing (FSP), an emerging solid state processing technique, is an effective tool to refine and homogenize the cast microstructure of an alloy. In this work, the effect of FSP on the microstructure of an A356 cast aluminum alloy, and the resulting effect on its tensile and fatigue behavior have been studied. The main focus is on crack initiation and propagation mechanisms, and how stage I and stage II cracks interact with the different microstructural features. Three unique microstructural conditions have been tested for fatigue performance at room temperature, 150 °C and 200 °C. Detailed fractography has been performed using optical microscopy, scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). These tools have also been utilized to characterize microstructural aspects like grain size, eutectic silicon particle size and distribution. Cyclic deformation at low temperatures is very sensitive to the microstructural distribution in this alloy. The findings from the room temperature fatigue tests highlight the important role played by persistent slip bands (PSBs) in fatigue crack initiation. At room ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Nelaturu, Phalgun
Partner: UNT Libraries

Stable Nanocrystalline Au Film Structures for Sliding Electrical Contacts

Description: Hard gold thin films and coatings are widely used in electronics as an effective material to reduce the friction and wear of relatively less expensive electrically conductive materials while simultaneously seeking to provide oxidation resistance and stable sliding electrical contact resistance (ECR). The main focus of this dissertation was to synthesize nanocrystalline Au films with grain structures capable of remaining stable during thermal exposure and under sliding electrical contact stress and the passing of electrical current. Here we have utilized a physical vapor deposition (PVD) technique, electron beam evaporation, to synthesize Au films modified by ion implantation and codeposited ZnO hardened Au nanocomposites. Simultaneous friction and ECR experiments of low fluence (< 1x10^17 cm^-2) He and Ar ion implanted Au films showed reduction in friction coefficients from ~1.5 to ~0.5 and specific wear rates from ~4x10^-3 to ~6x10^-5 mm^3/N·m versus as-deposited Au films without significant change in sliding ECR (~16 mΩ). Subsurface microstructural changes of He implanted films due to tribological stress were analyzed via site-specific cross-sectional transmission electron microscopy (TEM) and revealed the formation of nanocrystalline grains for low energy (22.5 keV) implantation conditions as well as the growth and redistribution of cavities. Nanoindentation hardness results revealed an increase from 0.84 GPa for as-deposited Au to ~1.77 GPa for Au uniformly implanted with 1 at% He. These strength increases are correlated with an Orowan hardening mechanism that increases proportionally to (He concentration)1/3. Au-ZnO nanocomposite films in the oxide dilute regime (< 5 vol% ZnO) were investigated for low temperature aging stability in friction and ECR. Annealing at 250 °C for 24 hours Au-(2 vol%)ZnO retained a friction coefficient comparable to commercial Ni hardened Au of ~ 0.3 and sliding ECR values of ~35 mΩ. Nanoindentation hardness increases of these films (~2.6 GPa for 5 vol% ZnO) are correlated to ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Mogonye, Jon-Erik
Partner: UNT Libraries

Reactions and Interfacial Behaviors of the Water–Amorphous Silica System from Classical and Ab Initio Molecular Dynamics Simulations

Description: Due to the wide application of silica based systems ranging from microelectronics to nuclear waste disposal, detailed knowledge of water-silica interactions plays an important role in understanding fundamental processes, such as glass corrosion and the long term reliability of devices. In this dissertation, atomistic computer simulation methods have been used to explore and identify the mechanisms of water-silica reactions and the detailed processes that control the properties of the water-silica interfaces due to their ability to provide atomic level details of the structure and reaction pathways. The main challenges of the amorphous nature of the silica based systems and nano-porosity of the structures were overcome by a combination of simulation methodologies based on classical molecular dynamics (MD) simulations with Reactive Force Field (ReaxFF) and density functional theory (DFT) based ab initio MD simulations. Through the development of nanoporous amorphous silica structure models, the interactions between water and the complex unhydroxylated internal surfaces identified the unusual stability of strained siloxane bonds in high energy ring structure defects, as well as the hydroxylation reaction kinetics, which suggests the difficulty in using DFT methods to simulate Si-O bond breakage with reasonable efficiency. Another important problem addressed is the development of silica gel structures and their interfaces, which is considered to control the long term residual dissolution rate in borosilicate glasses. Through application of the ReaxFF classical MD potential, silica gel structures which mimic the development of interfacial layers during silica dissolution were created A structural model, consisting of dense silica, silica gel, and bulk water, and the related interfaces was generated, to represent the dissolution gel structure. High temperature evolution of the silica-gel-water (SGW) structure was performed through classical MD simulation of the system, and growth of the gel into the water region occurred, as well as the formation of intermediate range structural ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Rimsza, Jessica M
Partner: UNT Libraries

Thermomechanical Processing, Additive Manufacturing and Alloy Design of High Strength Mg Alloys

Description: The recent emphasis on magnesium alloys can be appreciated by following the research push from several agencies, universities and editorial efforts. With a density equal to two-thirds of Al and one-thirds of steel, Mg provides the best opportunity for lightweighting of metallic components. However, one key bottleneck restricting its insertion into industrial applications is low strength values. In this respect, Mg-Y-Nd alloys have been promising due to their ability to form strengthening precipitates on the prismatic plane. However, if the strength is compared to Al alloys, these alloys are not attractive. The primary reason for low structural performance in Mg is related to low alloying and microstructural efficiency. In this dissertation, these terminologies are discussed in detail. A simple calculation showed that the microstructural efficiency in Mg-4Y-3Nd alloy is 30% of its maximum potential. Guided by the definitions of alloying and microstructural efficiency, the two prime objectives of this thesis were to: (i) to use thermomechanical processing routes to tailor the microstructure and achieve high strength in an Mg-4Y-3Nd alloy, and (ii) optimize the alloy chemistry of the Mg-rare earth alloy and design a novel rare—earth free Mg alloy by Calphad approach to achieve a strength of 500 MPa. Experimental, theoretical and computational approaches have been used to establish the process-structure-property relationships in an Mg-4Y-3Nd alloy. For example, increase in strength was observed after post aging of the friction stir processed/additive manufactured microstructure. This was attributed to the dissolution of Mg2Y particles which increased the alloying and microstructural efficiency. Further quantification by numerical modeling showed that the effective diffusivity during friction stir processing and friction stir welding is 60 times faster than in the absence of concurrent deformation leading to the dissolution of thermally stable particles. In addition, the investigation on the interaction between dislocations and strengthening precipitate revealed that, ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2016
Creator: Palanivel, Sivanesh
Partner: UNT Libraries

Deformation Micro-mechanisms of Simple and Complex Concentrated FCC Alloys

Description: The principal objective of this work was to elucidate the effect of microstructural features on the intrinsic dislocation mechanisms in two FCC alloys. First alloy Al0.1CoCrFeNi was from a new class of material known as complex concentrated alloys, particularly high entropy alloys (HEA). The second was a conventional Al-Mg-Sc alloy in ultrafine-grained (UFG) condition. In the case of HEA, the lattice possess significant lattice strain due to the atomic size variation and cohesive energy differences. Moreover, both the lattice friction stress and the Peierls barrier height are significantly larger than the conventional FCC metals and alloys. The experimental evidences, so far, provide a distinctive identity to the nature and motion of dislocations in FCC HEA as compared to the conventional FCC metals and alloys. Hence, the thermally activated dislocation mechanisms and kinetics in HEA has been studied in detail. To achieve the aim of examining the dislocation kinetics, transient tests, both strain rate jump tests and stress relaxation tests, were conducted. Anomalous behavior in dislocation kinetics was observed. Surprisingly, a large rate sensitivity of the flow stress and low activation volume of dislocations were observed, which are unparalleled as compared to conventional CG FCC metals and alloys. The observed trend has been explained in terms of the lattice distortion and dislocation energy framework. As opposed to the constant dislocation line energy and Peierls potential energy (amplitude, ΔE) in conventional metals and alloys, both line energy and Peierls potential undergo continuous variation in the case of HEA. These energy fluctuations have greatly affected the dislocation mobility and can be distinctly noted from the activation volume of dislocations. The proposed hypothesis was tested by varying the grain size and also the test temperature. Activation volume of dislocations was a strong function of temperature and increased with temperature. And the reduction in grain ...
Date: December 2015
Creator: Komarasamy, Mageshwari
Partner: UNT Libraries

First Principles Study of Metastable Beta Titanium Alloys

Description: The high temperature BCC phase (b) of titanium undergoes a martensitic transformation to HCP phase (a) upon cooling, but can be stabilized at room temperature by alloying with BCC transition metals such as Mo. There exists a metastable composition range within which the alloyed b phase separates into a + b upon equilibrium cooling but not when rapidly quenched. Compositional partitioning of the stabilizing element in as-quenched b microstructure creates nanoscale precipitates of a new simple hexagonal w phase, which considerably reduces ductility. These phase transformation reactions have been extensively studied experimentally, yet several significant questions remain: (i) The mechanism by which the alloying element stabilizes the b phase, thwarts its transformation to w, and how these processes vary as a function of the concentration of the stabilizing element is unclear. (ii) What is the atomistic mechanism responsible for the non-Arrhenius, anomalous diffusion widely observed in experiments, and how does it extend to low temperatures? How does the concentration of the stabilizing elements alter this behavior? There are many other w forming alloys that such exhibit anomalous diffusion behavior. (iii) A lack of clarity remains on whether w can transform to a -phase in the crystal bulk or if it occurs only at high-energy regions such as grain boundaries. Furthermore, what is the nature of the a phase embryo? (iv) Although previous computational results discovered a new wa transformation mechanism in pure Ti with activation energy lower than the classical Silcock pathway, it is at odds with the a / b / w orientation relationship seen in experiments. First principles calculations based on density functional theory provide an accurate approach to study such nanoscale behavior with full atomistic resolution, allowing investigation of the complex structural and chemical effects inherent in the alloyed state. In the present work, a model Ti-Mo ...
Date: August 2015
Creator: Gupta, Niraj
Partner: UNT Libraries

Plasma Interactions on Organosilicate Glass Dielectric Films and Emerging Amorphous Materials- Approach to Pore Sealing and Chemical Modifications

Description: In-situ x-ray photoemission (XPS) and ex-situ FTIR studies of nanoporous organosilicate glass (OSG) films point to the separate roles of radicals vs. VUV photons in the carbon abstraction. The studies indicate that reaction with O2 in presence of VUV photons (~123 nm) result in significant carbon abstraction within the bulk and that the kinetics of this process is diffusion-limited. In contrast, OSG exposed to atomic O (no VUV) results in Si-C bond scission and Si-O bond formation, but this process is self-limiting after formation of ~1 nm thick SiO2 surface layer that inhibits further diffusion. Therefore, the diffusion-dominated kinetics of carbon abstraction observed for OSG exposed to O2 plasma is definitively attributed to the diffusion of O2 down OSG nanopores, reacting at photo-activated sites, rather than to the diffusion of atomic O. Pretreatment of OSG by 900 eV Ar+ ion bombardment also results in formation of 1 nm thick SiO2-like surface overlayer that inhibits O2 diffusion, inhibiting VUV+O2 and O2 plasma-induced reactions, and that the effectiveness of this treatment increases with ion kinetic energy. On the contrary, organosilicate glass (OSG) films with backbone carbon (-Si-R-Si-) exhibit significantly enhanced resistance to carbon loss upon exposure to O2 plasma, radicals and VUV+O2 compared to films with terminal methyl groups (Si-CH3). Films incorporating backbone carbon chains (-Si-R-Si-) were deposited from 1,2 bis (triethoxysilyl) ethane (BTESE) precursor by ebeam or plasma cross-linking. The radical effects on BTESE film indicates negligible carbon loss or Si oxidation, combined with C-O bond formation, under conditions where OSG films with terminal methyl groups exhibit > 80% carbon loss within the surface region of the film. C-O bond formation is never observed for terminal CH3 groups. Further, backbone carbon (-Si-R-Si-) films exposed to VUV+O2 exhibit self-limiting, minimal net carbon loss. This indicates that plasma-induced Si-C bond rupture still occurs ...
Date: May 2015
Creator: Kazi, Haseeb
Partner: UNT Libraries

Combinatorial Assessment of the Influence of Composition and Exposure Time on the Oxidation Behavior and Concurrent Oxygen-induced Phase Transformations of Binary Ti-x Systems

Description: The relatively low oxidation resistance and subsequent surface embrittlement have often limited the use of titanium alloys in elevated temperature structural applications. Although extensive effort is spent to investigate the high temperature oxidation performance of titanium alloys, the studies are often constrained to complex technical titanium alloys and neither the mechanisms associated with evolution of the oxide scale nor the effect of oxygen ingress on the microstructure of the base metal are well-understood. In addition lack of systematic oxidation studies across a wider domain of the alloy composition has complicated the determination of composition-mechanism-property relationships. Clearly, it would be ideal to assess the influence of composition and exposure time on the oxidation resistance, independent of experimental variabilities regarding time, temperature and atmosphere as the potential source of error. Such studies might also provide a series of metrics (e.g., hardness, scale, etc) that could be interpreted together and related to the alloy composition. In this thesis a novel combinatorial approach was adopted whereby a series of compositionally graded specimens, (Ti-xMo, Ti-xCr, Ti-xAl and Ti-xW) were prepared using Laser Engineered Net Shaping (LENS™) technology and exposed to still-air at 650 °C. A suite of the state-of-the-art characterization techniques were employed to assess several aspects of the oxidation reaction as a function of local average composition including: the operating oxidation mechanisms; the structure and composition of the oxides; the oxide adherence and porosity; the thickness of the oxide layers; the depth of oxygen ingress; and microstructural evolution of the base material just below the surface but within the oxygen-enriched region. The results showed that for the Ti-Mo, Ti-Al and Ti-W systems a parabolic oxidation rate law is obeyed in the studied composition-time domain while Ti-Cr system experiences a rapid breakaway oxidation regime at low solute concentrations. The only titanium oxide phase present in ...
Date: May 2015
Creator: Samimi, Peyman
Partner: UNT Libraries