UNT Theses and Dissertations - 42 Matching Results

Search Results

The Effect of Average Grain Size on Polycrystalline Diamond Films

Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
Date: May 2002
Creator: Abbott, Patrick Roland
Partner: UNT Libraries

Perturbation of renewal processes

Description: Renewal theory began development in the early 1940s, as the need for it in the industrial engineering sub-discipline operations research had risen. In time, the theory found applications in many stochastic processes. In this thesis I investigated the effect of seasonal effects on Poisson and non-Poisson renewal processes in the form of perturbations. It was determined that the statistical analysis methods developed at UNT Center for Nonlinear Science can be used to detect the effects of seasonality on the data obtained from Poisson/non-Poisson renewal systems. It is proved that a perturbed Poisson process can serve as a paradigmatic model for a case where seasonality is correlated to the noise and that diffusion entropy method can be utilized in revealing this relation. A renewal model making a connection with the stochastic resonance phenomena is used to analyze a previous neurological experiment, and it was shown that under the effect of a nonlinear perturbation, a non-Poisson system statistics may make a transition and end up in the of Poisson basin of statistics. I determine that nonlinear perturbation of the power index for a complex system will lead to a change in the complexity characteristics of the system, i.e., the system will reach a new form of complexity.
Date: May 2008
Creator: Akin, Osman Caglar
Partner: UNT Libraries

Studying Interactions of Gas Molecules with Nanomaterials Loaded in a Microwave Resonant Cavity

Description: A resonant cavity operating in TE011 mode was used to study the adsorption response of single walled carbon nanotubes (SWCNTs) and other nanomaterials for different types of gas molecules. The range of the frequency signal as a probe was chosen as geometry dependent range between 9.1 -9.8 GHz. A highly specific range can be studied for further experiments dependent on the type of molecule being investigated. It was found that for different pressures of gases and for different types of nanomaterials, there was a different response in the shifts of the probe signal for each cycle of gassing and degassing of the cavity. This dissertation suggests that microwave spectroscopy of a complex medium of gases and carbon nanotubes can be used as a highly sensitive technique to determine the complex dielectric response of different polar as well as non-polar gases when subjected to intense electromagnetic fields within the cavity. Also, as part of the experimental work, a range of other micro-porous materials was tested using the residual gas analysis (RGA) technique to determine their intrinsic absorption/adsorption characteristics when under an ultra-high vacuum environment. The scientific results obtained from this investigation, led to the development of a chemical biological sensor prototype. The method proposed is to develop operational sensors to detect toxin gases for homeland security applications and also develop sniffers to detect toxin drugs for law enforcement agency personnel.
Date: August 2007
Creator: Anand, Aman
Partner: UNT Libraries

Non-Poissonian statistics, aging and "blinking'" quantum dots.

Description: This dissertation addresses the delicate problem of aging in complex systems characterized by non-Poissonian statistics. With reference to a generic two-states system interacting with a bath it is shown that to properly describe the evolution of such a system within the formalism of the continuous time random walk (CTRW), it has to be taken into account that, if the system is prepared at time t=0 and the observation of the system starts at a later time ta>0, the distribution of the first sojourn times in each of the two states depends on ta, the age of the system. It is shown that this aging property in the fractional derivative formalism forces to introduce a fractional index depending on time. It is shown also that, when a stationary condition exists, the Onsager regression principle is fulfilled only if the system is aged and consequently if an infinitely aged distribution for the first sojourn times is adopted in the CTRW formalism used to describe the system itself. This dissertation, as final result, shows how to extend to the non-Poisson case the Kubo Anderson (KA) lineshape theory, so as to turn it into a theoretical tool adequate to describe the time evolution of the absorption and emission spectra of CdSe quantum dots. The fluorescence emission of these single nanocrystals exhibits interesting intermittent behavior, namely, a sequence of "light on" and "light off" states, departing from Poisson statistics. Taking aging into account an exact analytical treatment is derived to calculate the spectrum. In the regime fitting experimental data this final result implies that the spectrum of the "blinking" quantum dots must age forever.
Date: August 2004
Creator: Aquino, Gerardo
Partner: UNT Libraries

The Nonadditive Generalization of Klimontovich's S-Theorem for Open Systems and Boltzmann's Orthodes

Description: We show that the nonadditive open systems can be studied in a consistent manner by using a generalized version of S-theorem. This new generalized S-theorem can further be considered as an indication of self-organization in nonadditive open systems as prescribed by Haken. The nonadditive S-theorem is then illustrated by using the modified Van der Pol oscillator. Finally, Tsallis entropy as an equilibrium entropy is studied by using Boltzmann's method of orthodes. This part of dissertation shows that Tsallis ensemble is on equal footing with the microcanonical, canonical and grand canonical ensembles. However, the associated entropy turns out to be Renyi entropy.
Date: August 2008
Creator: Bagci, Gokhan Baris
Partner: UNT Libraries

Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Description: This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-binding model. Calculations were within second-order Born-approximation to second-order in disorder parameters. An analytical expression for localization length as a functional of correlations in potentials was found. Anderson localization in DNA molecules were studied in single-channel wire and two-channel models for electron transport in DNA. In both of the models, some DNA sequences exhibited delocalized electron states in their energy spectrum. Studies with two-channel wire model for DNA yielded important link between electron localization properties and genetic information.
Date: December 2007
Creator: Bagci, V. M. Kemal
Partner: UNT Libraries

Complexity as Aging Non-Poisson Renewal Processes

Description: The search for a satisfactory model for complexity, meant as an intermediate condition between total order and total disorder, is still subject of debate in the scientific community. In this dissertation the emergence of non-Poisson renewal processes in several complex systems is investigated. After reviewing the basics of renewal theory, another popular approach to complexity, called modulation, is introduced. I show how these two different approaches, given a suitable choice of the parameter involved, can generate the same macroscopic outcome, namely an inverse power law distribution density of events occurrence. To solve this ambiguity, a numerical instrument, based on the theoretical analysis of the aging properties of renewal systems, is introduced. The application of this method, called renewal aging experiment, allows us to distinguish if a time series has been generated by a renewal or a modulation process. This method of analysis is then applied to several physical systems, from blinking quantum dots, to the human brain activity, to seismic fluctuations. Theoretical conclusions about the underlying nature of the considered complex systems are drawn.
Date: May 2007
Creator: Bianco, Simone
Partner: UNT Libraries

Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Description: Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a position-sensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon.
Date: August 2000
Creator: Bigelow, Alan W.
Partner: UNT Libraries

The Dynamic Foundation of Fractal Operators.

Description: The fractal operators discussed in this dissertation are introduced in the form originally proposed in an earlier book of the candidate, which proves to be very convenient for physicists, due to its heuristic and intuitive nature. This dissertation proves that these fractal operators are the most convenient tools to address a number of problems in condensed matter, in accordance with the point of view of many other authors, and with the earlier book of the candidate. The microscopic foundation of the fractal calculus on the basis of either classical or quantum mechanics is still unknown, and the second part of this dissertation aims at this important task. This dissertation proves that the adoption of a master equation approach, and so of probabilistic as well as dynamical argument yields a satisfactory solution of the problem, as shown in a work by the candidate already published. At the same time, this dissertation shows that the foundation of Levy statistics is compatible with ordinary statistical mechanics and thermodynamics. The problem of the connection with the Kolmogorov-Sinai entropy is a delicate problem that, however, can be successfully solved. The derivation from a microscopic Liouville-like approach based on densities, however, is shown to be impossible. This dissertation, in fact, establishes the existence of a striking conflict between densities and trajectories. The third part of this dissertation is devoted to establishing the consequences of the conflict between trajectories and densities in quantum mechanics, and triggers a search for the experimental assessment of spontaneous wave-function collapses. The research work of this dissertation has been the object of several papers and two books.
Date: May 2003
Creator: Bologna, Mauro
Partner: UNT Libraries

Fractional Brownian motion and dynamic approach to complexity.

Description: The dynamic approach to fractional Brownian motion (FBM) establishes a link between non-Poisson renewal process with abrupt jumps resetting to zero the system's memory and correlated dynamic processes, whose individual trajectories keep a non-vanishing memory of their past time evolution. It is well known that the recrossing times of the origin by an ordinary 1D diffusion trajectory generates a distribution of time distances between two consecutive origin recrossing times with an inverse power law with index m=1.5. However, with theoretical and numerical arguments, it is proved that this is the special case of a more general condition, insofar as the recrossing times produced by the dynamic FBM generates process with m=2-H. Later, the model of ballistic deposition is studied, which is as a simple way to establish cooperation among the columns of a growing surface, to show that cooperation generates memory properties and, at same time, non-Poisson renewal events. Finally, the connection between trajectory and density memory is discussed, showing that the trajectory memory does not necessarily yields density memory, and density memory might be compatible with the existence of abrupt jumps resetting to zero the system's memory.
Date: August 2007
Creator: Cakir, Rasit
Partner: UNT Libraries

Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles

Description: This dissertation aims at addressing two important theoretical questions which are still debated in the statistical mechanical community. The first question has to do with the outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws with the time-reversal symmetric laws of microscopic dynamics. This problem is addressed by developing a novel mechanical approach inspired by the work of Helmholtz on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By following a line of investigation initiated by Boltzmann, a Generalized Helmholtz Theorem is stated and proved. This theorem provides us with a good microscopic analogue of thermodynamic entropy. This is the volume entropy, namely the logarithm of the volume of phase space enclosed by the constant energy hyper-surface. By using quantum mechanics only, it is shown that such entropy can only increase. This can be seen as a novel rigorous proof of the Second Law of Thermodynamics that sheds new light onto the arrow of time problem. The volume entropy behaves in a thermodynamic-like way independent of the number of degrees of freedom of the system, indicating that a whole thermodynamic-like world exists at the microscopic level. It is also shown that breaking of ergodicity leads to microcanonical phase transitions associated with nonanalyticities of volume entropy. The second part of the dissertation deals with the problem of the foundations of generalized ensembles in statistical mechanics. The starting point is Boltzmann's work on statistical ensembles and its relation with the Heat Theorem. We first focus on the nonextensive thermostatistics of Tsallis and the associated deformed exponential ensembles. These ensembles are analyzed in detail and proved (a) to comply with the requirements posed by the Heat Theorem, and (b) to interpolate between canonical and microcanonical ensembles. Further they are showed to describe finite systems in contact with finite heat baths. ...
Date: May 2008
Creator: Campisi, Michele
Partner: UNT Libraries

The Concept of Collision Strength and Its Applications

Description: Collision strength, the measure of strength for a binary collision, hasn't been defined clearly. In practice, many physical arguments have been employed for the purpose and taken for granted. A scattering angle has been widely and intensively used as a measure of collision strength in plasma physics for years. The result of this is complication and unnecessary approximation in deriving some of the basic kinetic equations and in calculating some of the basic physical terms. The Boltzmann equation has a five-fold integral collision term that is complicated. Chandrasekhar and Spitzer's approaches to the linear Fokker-Planck coefficients have several approximations. An effective variable-change technique has been developed in this dissertation as an alternative to scattering angle as the measure of collision strength. By introducing the square of the reduced impulse or its equivalencies as a collision strength variable, many plasma calculations have been simplified. The five-fold linear Boltzmann collision integral and linearized Boltzmann collision integral are simplified to three-fold integrals. The arbitrary order linear Fokker-Planck coefficients are calculated and expressed in a uniform expression. The new theory provides a simple and exact method for describing the equilibrium plasma collision rate, and a precise calculation of the equilibrium relaxation time. It generalizes bimolecular collision reaction rate theory to a reaction rate theory for plasmas. A simple formula of high precision with wide temperature range has been developed for electron impact ionization rates for carbon atoms and ions. The universality of the concept of collision strength is emphasized. This dissertation will show how Arrhenius' chemical reaction rate theory and Thomson's ionization theory can be unified as one single theory under the concept of collision strength, and how many important physical terms in different disciplines, such as activation energy in chemical reaction theory, ionization energy in Thomson's ionization theory, and the Coulomb logarithm in ...
Date: May 2004
Creator: Chang, Yongbin
Partner: UNT Libraries

Microstructure and Electronic Structures of Er-Doped Si Nano-particles Synthesized by Vapor Phase Pyrolysis

Description: Si nanoparticles are new prospective optoelectronic materials. Unlike bulk Si cry-stals, Si nanoparticles display intriguing room-temperature photoluminescence. A major challenge in the fabrication of Si nanoparticles is the control of their size distribution. The rare-earth element Er has unique photo emission properties, including low pumping power, and a temperature independent, sharp spectrum. The emission wavelength matches the transmission window of optical fibers used in the telecommunications industry. Therefore, the study of Er-doped Si nanoparticles may have practical significance. The goals of the research described in this dissertation are to investigate vapor phase pyrolysis methods and to characterize the microstructure and associated defects, particles size distributions and photoluminescence efficiencies of doped and undoped Si nanoparticles using analytical transmission electron microscopy, high resolution electron microscopy, and optical spectroscopy. Er-doped and undoped Si nanoparticles were synthesized via vapor-phase pyrolysis of disilane at Texas Christian University. To achieve monodisperse size distributions, a process with fast nucleation and slow growth was employed. Disilane was diluted to 0.48% with helium. A horizontal pyrolysis oven was maintained at a temperature of 1000 °C. The oven length was varied from 1.5 cm to 6.0 cm to investigate the influence of oven length on the properties of the nanoparticles. The Si nanoparticles were collected in ethylene-glycol. The doped and undoped Si nanoparticles have a Si diamond cubic crystal structure. Neither Er precipitation, Er oxides or Er silicides were detected in any of the samples. The Er dopant concentration was about 2 atom% for doped samples from the 3.0 and 6.0 cm ovens as determined by quantitative analysis using X-ray energy dispersive spectroscopy. The average Si nanoparticle size increases from 11.3 to 15.2 nm in the doped samples and from 11.1 to 15.7 nm in the undoped samples as the oven length increases from 1.5 to 6.0 cm. HREM data ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Chen, Yandong
Partner: UNT Libraries

Growth and Characterization of β-Iron Disilicide, β-Iron Silicon Germanide, and Osmium Silicides

Description: The semiconducting silicides offer significant potential for use in optoelectronic devices. Full implementation of the materials, however, requires the ability to tailor the energy gap and band structure to permit the synthesis of heterojunctions. One promising approach is to alloy the silicides with Ge. As part of an investigation into the synthesis of semiconducting silicide heterostructures, a series of β-Fe(Si1−xGex)2 epilayer samples, with nominal alloy content in the range 0 < x < 0.15, have been prepared by molecular beam epitaxy on Si(100). I present results of the epitaxial and crystalline quality of the films, as determined by reflection high-energy electron diffraction, Rutherford backscattering spectroscopy, and double crystal x-ray diffraction, and of the band gap dependence on the alloy composition, as determined by Fourier transform infrared spectroscopy. A reduction in band gap was observed with increasing Ge content, in agreement with previous theoretical predictions. However Ge segregation was also observed in β-Fe(Si1−xGex)2 epilayers when x > 0.04. Osmium silicide films have been grown by molecular beam epitaxy on Si(100). The silicides have been grown using e-beam evaporation sources for both Os and Si onto Si(100) substrates at varying growth rates and temperatures ranging from 600-700ºC. The resulting films have been analyzed using reflection high-energy electron diffraction, Raman spectroscopy, reflectivity measurements, in-plane and out of plane X-ray diffraction and temperature dependent magnetotransport. A change in crystalline quality is observed with an increase in Si overpressure. For a lower silicon to osmium flux ration (JSi/JOs=1.5) both OsSi2 and Os2Si3 occur, whereas with a much larger Si overpressure (JSi/JOs>4), crystalline quality is greatly increased and only a single phase, Os2Si3, is present. The out-of-plane X-ray diffraction data show that the film grows along its [4 0 2] direction, with a good crystal quality as evidenced by the small FWHM in the rocking curve. ...
Date: August 2009
Creator: Cottier, Ryan James
Partner: UNT Libraries

Nested Well Plasma Traps

Description: Criteria for the confinement of plasmas consisting of a positive and negative component in Penning type traps with nested electric potential wells are presented. Computational techniques for the self-consistent calculation of potential and plasma density distributions are developed. Analyses are presented of the use of nested well Penning traps for several applications. The analyses include: calculations of timescales relevant to the applications, e.g. reaction, confinement and relaxation timescales, self-consistent computations, and consideration of other physical phenomenon important to the applications. Possible applications of a nested well penning trap include production of high charge state ions, studies of high charge state ions, and production of antihydrogen. In addition the properties of a modified Penning trap consisting of an electric potential well applied along a radial magnetic field are explored.
Date: August 2000
Creator: Dolliver, Darrell
Partner: UNT Libraries

Random growth of interfaces: Statistical analysis of single columns and detection of critical events.

Description: The dynamics of growth and formation of surfaces and interfaces is becoming very important for the understanding of the origin and the behavior of a wide range of natural and industrial dynamical processes. The first part of the paper is focused on the interesting field of the random growth of surfaces and interfaces, which finds application in physics, geology, biology, economics, and engineering among others. In this part it is studied the random growth of surfaces from within the perspective of a single column, namely, the fluctuation of the column height around the mean value, which is depicted as being subordinated to a standard fluctuation-dissipation process with friction g. It is argued that the main properties of Kardar-Parisi-Zhang theory are derived by identifying the distribution of return times to y(0) = 0, which is a truncated inverse power law, with the distribution of subordination times. The agreement of the theoretical prediction with the numerical treatment of the model of ballistic deposition is remarkably good, in spite of the finite size effects affecting this model. The second part of the paper deals with the efficiency of the diffusion entropy analysis (DEA) when applied to the studies of stromatolites. In this case it is shown that this tool can be confidently used for the detection of complexity. The connection between the two studies is established by the use of the DEA itself. In fact, in both analyses, that is, the random growth of interfaces and the study of stromatolites, the method of diffusion entropy is able to detect the real scaling of the system, namely, the scaling of the process is determined by genuinely random events, also called critical events.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2004
Creator: Failla, Roberto
Partner: UNT Libraries

Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices

Description: The emergence of optical applications, such as lasers, fiber optics, and semiconductor based sources and detectors, has created a drive for smaller and more specialized devices. Nanophotonics is an emerging field of study that encompasses the disciplines of physics, engineering, chemistry, biology, applied sciences and biomedical technology. In particular, nanophotonics explores optical processes on a nanoscale. This dissertation presents nanophotonic applications that incorporate various forms of the organic polymer N-isopropylacrylamide (NIPA) with inorganic semiconductors. This includes the material characterization of NIPA, with such techniques as ellipsometry and dynamic light scattering. Two devices were constructed incorporating the NIPA hydrogel with semiconductors. The first device comprises a PNIPAM-CdTe hybrid material. The PNIPAM is a means for the control of distances between CdTe quantum dots encapsulated within the hydrogel. Controlling the distance between the quantum dots allows for the control of resonant energy transfer between neighboring quantum dots. Whereby, providing a means for controlling the temperature dependent red-shifts in photoluminescent peaks and FWHM. Further, enhancement of photoluminescent due to increased scattering in the medium is shown as a function of temperature. The second device incorporates NIPA into a 2D photonic crystal patterned on GaAs. The refractive index change of the NIPA hydrogel as it undergoes its phase change creates a controllable mechanism for adjusting the transmittance of light frequencies through a linear defect in a photonic crystal. The NIPA infiltrated photonic crystal shows greater shifts in the bandwidth per ºC than any liquid crystal methods. This dissertation demonstrates the versatile uses of hydrogel, as a means of control in nanophotonic devices, and will likely lead to development of other hybrid applications. The development of smaller light based applications will facilitate the need to augment the devices with control mechanism and will play an increasing important role in the future.
Date: May 2008
Creator: Garner, Brett William
Partner: UNT Libraries

Emergence of Complexity from Synchronization and Cooperation

Description: The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of non-Poisson renewal processes. In particular I introduce two new complex system models, namely the two-state stochastic clocks and the integrate-and-fire stochastic neurons, and investigate its coupled dynamics in different network topologies. Based on the foundations of renewal theory, I show how complexity, as manifested by the occurrence of non-exponential distribution of events, emerges from the interaction of the units of the system. Conclusion is made on the work's applicability to explaining the dynamics of blinking nanocrystals, neuron interaction in the human brain, and synchronization processes in complex networks.
Date: May 2008
Creator: Geneston, Elvis L.
Partner: UNT Libraries

Decoherence, Master Equation for Open Quantum Systems, and the Subordination Theory

Description: This thesis addresses the problem of a form of anomalous decoherence that sheds light into the spectroscopy of blinking quantum dots. The system studied is a two-state system, interacting with an external environment that has the effect of establishing an interaction between the two states, via a coherence generating coupling, called inphasing. The collisions with the environment produce also decoherence, named dephasing. Decoherence is interpreted as the entanglement of the coherent superposition of these two states with the environment. The joint action of inphasing and dephasing generates a Markov master equation statistically equivalent to a random walker jumping from one state to the other. This model can be used to describe intermittent fluorescence, as a sequence of "light on" and "light off" states. The experiments on blinking quantum dots indicate that the sojourn times are distributed with an inverse power law. Thus, a proposal to turn the model for Poisson fluorescence intermittency into a model for non-Poisson fluorescence intermittency is made. The collision-like interaction of the two-state system with the environment is assumed to takes place at random times rather than at regular times. The time distance between one collision and the next is given by a distribution, called the subordination distribution. If the subordination distribution is exponential, a sequence of collisions yielding no persistence is turned into a sequence of "light on" and "light off" states with significant persistence. If the subordination function is an inverse power law the sequel of "light on" and "light off" states becomes equivalent to the experimental sequences. Different conditions are considered, ranging from predominant inphasing to predominant dephasing. When dephasing is predominant the sequel of "light on" and "light off" states in the time asymptotic limit becomes an inverse power law. If the predominant dephasing involves a time scale much larger than the ...
Date: August 2005
Creator: Giraldi, Filippo
Partner: UNT Libraries

Charge Collection Studies on Integrated Circuit Test Structures using Heavy-Ion Microbeams and MEDICI Simulation Calculations

Description: Ion induced charge collection dynamics within Integrated Circuits (ICs) is important due to the presence of ionizing radiation in the IC environment. As the charge signals defining data states are reduced by voltage and area scaling, the semiconductor device will naturally have a higher susceptibility to ionizing radiation induced effects. The ionizing radiation can lead to the undesired generation and migration of charge within an IC. This can alter, for example, the memory state of a bit, and thereby produce what is called a "soft" error, or Single Event Upset (SEU). Therefore, the response of ICs to natural radiation is of great concern for the reliability of future devices. Immunity to soft errors is listed as a requirement in the 1997 National Technology Roadmap for Semiconductors prepared by the Semiconductor Industry Association in the United States. To design more robust devices, it is essential to create and test accurate models of induced charge collection and transport in semiconductor devices. A heavy ion microbeam produced by an accelerator is an ideal tool to study charge collection processes in ICs and to locate the weak nodes and structures for improvement through hardening design. In this dissertation, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate recoil effects of ions in ICs. These silicon or light ion recoils are usually produced by the elastic scattering or inelastic reactions between cosmic neutrons or protons and the lattice atoms in ICs. Specially designed test structures were experimentally studied, using microbeams produced at Sandia National Laboratories. A new technique, Diffusion Time Resolved IBICC, is first proposed in this work to measure the average arrival time of the diffused charge, which can be related to the first moment (or the average time) of the arrival carrier density at the junction. A 2D device simulation ...
Date: May 2000
Creator: Guo, Baonian
Partner: UNT Libraries

Exploration of hierarchical leadership and connectivity in neural networks in vitro.

Description: Living neural networks are capable of processing information much faster than a modern computer, despite running at significantly lower clock speeds. Therefore, understanding the mechanisms neural networks utilize is an issue of substantial importance. Neuronal interaction dynamics were studied using histiotypic networks growing on microelectrode arrays in vitro. Hierarchical relationships were explored using bursting (when many neurons fire in a short time frame) dynamics, pairwise neuronal activation, and information theoretic measures. Together, these methods reveal that global network activity results from ignition by a small group of burst leader neurons, which form a primary circuit that is responsible for initiating most network-wide burst events. Phase delays between leaders and followers reveal information about the nature of the connection between the two. Physical distance from a burst leader appears to be an important factor in follower response dynamics. Information theory reveals that mutual information between neuronal pairs is also a function of physical distance. Activation relationships in developing networks were studied and plating density was found to play an important role in network connectivity development. These measures provide unique views of network connectivity and hierarchical relationship in vitro which should be included in biologically meaningful models of neural networks.
Date: December 2008
Creator: Ham, Michael I.
Partner: UNT Libraries

A Novel Process for GeSi Thin Film Synthesis

Description: A unique process of fabricating a strained layer GexSi1-x on insulator is demonstrated. Such strained heterostructures are useful in the fabrication of high-mobility transistors. This technique incorporates well-established silicon processing technology e.g., ion implantation and thermal oxidation. A dilute GeSi layer is initially formed by implanting Ge+ into a silicon-on-insulator (SOI) substrate. Thermal oxidation segregates the Ge at the growing oxide interface to form a distinct GexSi1-x thin-film with a composition that can be tailored by controlling the oxidation parameters (e.g. temperature and oxidation ambient). In addition, the film thickness can be controlled by implantation fluence, which is important since the film forms pseudomorphically below 2×1016 Ge/cm2. Continued oxidation consumes the underlying Si leaving the strained GeSi film encapsulated by the two oxide layers, i.e. the top thermal oxide and the buried oxide. Removal of the thermal oxide by a dilute HF etch completes the process. Strain relaxation can be achieved by either of two methods. One involves vacancy injection by ion implantation to introduce sufficient open-volume within the film to compensate for the compressive strain. The other depends upon the formation of GeO2. If Ge is oxidized in the absence of Si, it evaporates as GeO(g) resulting in spontaneous relaxation within the strained film. Conditions under which this occurs have been discussed along with elaborated results of oxidation kinetics of Ge-ion implanted silicon. Rutherford backscattering spectrometry (RBS), ion channeling, Raman spectroscopy and scanning electron microscopy (SEM) were used as the characterization techniques.
Date: December 2007
Creator: Hossain, Khalid
Partner: UNT Libraries

Complexity as a Form of Transition From Dynamics to Thermodynamics: Application to Sociological and Biological Processes.

Description: This dissertation addresses the delicate problem of establishing the statistical mechanical foundation of complex processes. These processes are characterized by a delicate balance of randomness and order, and a correct paradigm for them seems to be the concept of sporadic randomness. First of all, we have studied if it is possible to establish a foundation of these processes on the basis of a generalized version of thermodynamics, of non-extensive nature. A detailed account of this attempt is reported in Ignaccolo and Grigolini (2001), which shows that this approach leads to inconsistencies. It is shown that there is no need to generalize the Kolmogorov-Sinai entropy by means of a non-extensive indicator, and that the anomaly of these processes does not rest on their non-extensive nature, but rather in the fact that the process of transition from dynamics to thermodynamics, this being still extensive, occurs in an exceptionally extended time scale. Even, when the invariant distribution exists, the time necessary to reach the thermodynamic scaling regime is infinite. In the case where no invariant distribution exists, the complex system lives forever in a condition intermediate between dynamics and thermodynamics. This discovery has made it possible to create a new method of analysis of non-stationary time series which is currently applied to problems of sociological and physiological interest.
Date: May 2003
Creator: Ignaccolo, Massimiliano
Partner: UNT Libraries

Carbon Nanotube/Microwave Interactions and Applications to Hydrogen Fuel Cells.

Description: One of the leading problems that will be carried into the 21st century is that of alternative fuels to get our planet away from the consumption of fossil fuels. There has been a growing interest in the use of nanotechnology to somehow aid in this progression. There are several unanswered questions in how to do this. It is known that carbon nanotubes will store hydrogen but it is unclear how to increase that storage capacity and how to remove this hydrogen fuel once stored. This document offers some answers to these questions. It is possible to implant more hydrogen in a nanotube sample using a technique of ion implantation at energy levels ~50keV and below. This, accompanied with the rapid removal of that stored hydrogen through the application of a microwave field, proves to be one promising avenue to solve these two unanswered questions.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2004
Creator: Imholt, Timothy James
Partner: UNT Libraries