UNT Theses and Dissertations - 662 Matching Results

Search Results

Interfacial Characterization of Chemical Vapor Deposition (Cvd) Grown Graphene and Electrodeposited Bismuth on Ruthenium Surface

Description: Graphene receives enormous attention owing to its distinctive physical and chemical prosperities. Growing and transferring graphene to different substrates have been investigated. The graphene growing on the copper substrate has an advantage of low solubility of carbon on the copper which allow us to grow mostly monolayer graphene. Graphene sheet of few centimeters can be transferred to 300nm silicon oxide and quartz crystal pre-deposited with metal like Cu and Ru. Characterization of the graphene has been done with Raman and contact angle measurement and recently quartz crystal microbalance (QCM) has been employed. The underpotential deposition (UPD) process of Bi on Ru metal surface is studied using electrochemical quartz crystal microbalance (EQCM) and XPS techniques. Both Bi UPD and Bi bulk deposition are clearly observed on Ru in 1mM Bi (NO3)3/0.5M H2SO4. Bi monolayer coverage calculated from mass (MLMass) and from charge (MLCharge) were compared with respect to the potential scanning rates, anions and ambient controls. EQCM results indicate that Bi UPD on Ru is mostly scan rate independent but exhibits interesting difference at the slower scan. Bi UPD monolayer coverage calculated from cathodic frequency change (ΔfCathodic) is significantly smaller than the monolayer coverage derived from integrated charge under the cathodic Bi UPD peak when scan rate is at least 5 mV/s. XPS is utilized to explore the detailed chemical composition of the observed interfacial process of Bi UPD on Ru.
Date: May 2014
Creator: Abdelghani, Jafar
Partner: UNT Libraries

Base Effects on the Thermal Decomposition of Sec-butyllithium Solutions

Description: The pyrolysis of sec-butyllithium in solution was studied in an attempt to understand the loss of stereo-specificity and the atypical kinetics that have been reported. Additionally, the effect of added lithium alkoxides was studied to determine their effects on the highly reactive sec-butyllithium substrate.
Date: June 1966
Creator: Adams, George Michael
Partner: UNT Libraries

Applications of Metallic Clusters and Nanoparticles via Soft Landing Ion Mobility, from Reduced to Ambient Pressures

Description: Nanoparticles, simple yet groundbreaking objects have led to the discovery of invaluable information due to their physiological, chemical, and physical properties, have become a hot topic in various fields of study including but not limited to chemistry, biology, and physics. In the work presented here, demonstrations of various applications of chemical free nanoparticles are explored, from the determination of a non-invasive method for the study of the exposome via using soft-landing ion mobility (SLIM) deposited nanoparticles as a matrix-assisted laser desorption/ionization (MALDI-MS) matrix replacement, to the direct SLIM-exposure of nanoparticles onto living organisms. While there is plenty of published work in soft-landing at operating pressures of 1 Torr, the work presented here shows how this technology can be operated at the less common ambient pressure. The ease of construction of this instrument allows for various modifications to be performed for a wide array of applications, furthermore the flexibility in metallic sample, operating pressure, and deposition time only open doors to many other future applications. The work presented will also show that our ambient SLIM system is also able to be operated for toxicological studies, as the operation at ambient pressure opens the door to new applications where vacuum conditions are not desired.
Date: August 2018
Creator: Aguilar Ayala, Roberto
Partner: UNT Libraries

Determination of Molecular Descriptors for Illegal Drugs by Gc-fid Using Abraham Solvation Model

Description: The Abraham solvation parameter model is a good approach for analyzing and predicting biological activities and partitioning coefficients. The general solvation equation has been used to predict the solute property (SP) behavior of drug compounds between biological barriers. Gas chromatography (GC) retention time can be used to predict molecular descriptors, such as E, S, A, B & L for existing and newly developed drug compounds. In this research, six columns of different stationary phases were used to predict the Abraham molecular descriptors more accurately. The six stationary phases used were 5% phenylmethyl polysiloxane, 6% cyanopropylphenyl 94% dimethylpolysiloxane, 5% diphenyl 95% dimethylpolysiloxane, 100% dimethylpolysiloxane, polyethylene glycol and 35% diphenyl 65% dimethylpolysiloxane. Retention times (RT) of 75 compounds have been measured and logarithm of experimental average retention time Ln(RTexp) are calculated. The Abraham solvation model is then applied to predict the process coefficients of these compounds using the literature values of the molecular descriptors (Acree Compilation descriptors). Six correlation equations are built up as a training set for each of the six columns. The six equations are then used to predict the molecular descriptors of the illegal drugs as a test set. This work shows the ability to extract molecular information from a new compound by utilizing commonly used GC columns available with the desired stationary phases. One can simply run the new compound in GC using these columns to get the retention time. Plugging in the retention time into the developed equations for each of the column will predict the molecular descriptors for the test compound and will give some information about the properties of the compound.
Date: December 2013
Creator: Akhter, Syeda Sabrina
Partner: UNT Libraries

Baeyer-Villiger Oxidation of 1,7- & 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione

Description: Baeyer-Villiger oxidation of 1,9-dibromopentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione (1,9-dibromo-PCU-8,11-dione) was performed by using an excess amount of m-chloroperbenzoic acid (3 equivalents) and resulted in the formation of the corresponding monolactone. The reaction would not proceed to the dilactone stage. The structure of the reaction product was established unequivocally via single crystal X-ray diffraction. Baeyer-Villiger oxidation of 1,9-dibromo-PCU-8,11-dione using ceric ammonium nitrate (CAN) was also performed and afforded a mixture of lactones. Only one of these lactones, which also contained an alkene functionality, could be isolated and characterized. 1,7-dibromo-PCU-8,11-dione was also reacted with CAN, yielding the mono-lactone, which has also been characterized.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2004
Creator: Akinola, Adeniyi O.
Partner: UNT Libraries

Synthesis, characterization and properties of rigid macromolecules with extended conjugation, using palladium-catalyzed alkynylated polyhaloarenes.

Description: A synthetic approach to macromolecules of acetylenic arrays and luminescent properties is proposed and the execution of initial steps is described. Palladium-catalyzed coupling of 1,3,5-triiodobenzene with trimethylsilylbuta-1,3-diyne, trimethylsilylocta-1,3,5,7-tetrayne, and trimethylsilylhexadeca-1,3,5,7,9,11,13,15-octayne to yield the new 1,3,5-tris(trimethylsilylbuta-1,3-diynyl)benzene and the proposed 1,3,5-tris(8-(trimethylsilyl)octa-1,3,5,7-tetraynyl)benzene and 1,3,5-tris(trimethylsilyl)hexadeca-1,3,5,7,9,11,13,15-octaynyl)benzene respectively. The proposed three-coordinate Au (I) complexed macromolecules will be derived from the metallation of the aforementioned alkynylated arenes.
Date: December 2007
Creator: Akintomide, Temiloluwa
Partner: UNT Libraries

The Synthesis and Reactivity of Bis(silyl)acetylenes

Description: Six bis(silyl)acetylenes with the following varied silicon substituents were prepared: I (Me, Me); II (H, H); III (Cl, H); IV (Cl, Cl); V (OMe, H); VI (OMe, OMe). While I and II may be prepared by the reaction of dilithio- or bis(bromomagnesium)-acetylide with appropriate chlorosilane, similar reactions designed to give III - VI give oligomers, YMe_2Si(C≡C-SiMe_2)_nY, VII, Y = Cl, OMe, as the major products indicating that the acetylenic functionality on silicon activates the chlorosilane toward nucleophilic substitution. Compounds III and IV were prepared by free radical chlorination of II. Methanolysis of III and IV gave quantitative yields of V and VI, respectively. In the presence of mineral acid, VI readily cyclized to give high yields of the cyclic siloxane octamethyl-4,9-dioxa-3,5,8,10-tetrasila-cyclodeca-1,6-diyne, VIII, and the analogous triyne, IX. It was determined that V and VI could be prepared directly from II in high yield by methanolysis with palladium catalyst. Vaska's complex also accomplished the conversion. I attempted to prepare bis(ethoxydimethylsilyl)acetylene by using of Wilkinson 's catalyst for hydrosilylation with acetaldehyde. The principal product of this reaction was 1-(dimethylsilyl)-3,5,5-trimethyl-4-oxa-3-silacyclopent-1-ene, XI.
Date: May 1987
Creator: Albanesi, Todd E. (Todd Edward)
Partner: UNT Libraries

Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase.

Description: The gas phase reactions of atomic chlorine with hydrogen sulfide, ammonia, benzene, and ethylene are investigated using the laser flash photolysis / resonance fluorescence experimental technique. In addition, the kinetics of the reverse processes for the latter two elementary reactions are also studied experimentally. The absolute rate constants for these processes are measured over a wide range of conditions, and the results offer new accurate information about the reactivity and thermochemistry of these systems. The temperature dependences of these reactions are interpreted via the Arrhenius equation, which yields significantly negative activation energies for the reaction of the chlorine atom and hydrogen sulfide as well as for that between the phenyl radical and hydrogen chloride. Positive activation energies which are smaller than the overall endothermicity are measured for the reactions between atomic chlorine with ammonia and ethylene, which suggests that the reverse processes for these reactions also possess negative activation energies. The enthalpies of formation of the phenyl and β-chlorovinyl are assessed via the third-law method. The stability and reactivity of each reaction system is further rationalized based on potential energy surfaces, computed with high-level ab initio quantum mechanical methods and refined through the inclusion of effects which arise from the special theory of relativity. Large amounts of spin-contamination are found to result in inaccurate computed thermochemistry for the phenyl and ethyl radicals. A reformulation of the computational approach to incorporate spin-restricted reference wavefunctions yields computed thermochemistry in good accord with experiment. The computed potential energy surfaces rationalize the observed negative temperature dependences in terms of a chemical activation mechanism, and the possibility that an energized adduct may contribute to product formation is investigated via RRKM theory.
Date: August 2009
Creator: Alecu, Ionut M.
Partner: UNT Libraries

Pressure Effects on Electric Field Spectra of Molecular Rydberg States

Description: Electric field studies, electrochromism, were used to obtain excited-state data for analogous divalent sulfur compounds. The sulfides investigated were dimethyl sulfide and small cyclic sulfides including the three to six member ring compounds. The excited-state dipole moments and polarizabilities are reported for the first s, p, and d Rydberg absorption bands which occur in the near vacuum ultraviolet region from 230 to 170 nm. The excited-state data are interpreted in terms of the particular excited-state (s, p, or d) for the molecules and the bending differences due to the presence of the ring and the number of atoms in the ring. The next section describes the use of electrochromism to investigate the pressure effect of argon, carbon tetrafluoride and sulfur hexafluoride on the spectra for molecular Rydberg states.
Date: December 1982
Creator: Altenloh, Daniel Dean
Partner: UNT Libraries

Synthesis and Characterization of Copper(II) Complexes

Description: A series of dihydroxy bridged copper(II) complexes of the type [(L)Cu(OH)₂Cu(L)]x₂ * nH₂0, where L is 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine or 1,10-phenanthroline, x is a counter ion, and n is the number of water molecules, was synthesized. In the case of monohydroxy bridged copper(II) complexes, we have found a new method of synthesis for [ (L)₂Cu(OH)Cu(L)₂ ] (ClO₄)₃, where L is 2,2'-bipyridine or 1,10-phenanthroline. We have synthesized five new monohydroxy bridged copper(II) complexes, thus increasing the number of monohydroxy bridged copper(II) complexes to nine. All complexes have been characterized by infrared spectroscopy, UV-visible spectroscopy, magnetic moments, and elemental analysis. The electron spin resonance results establish that the fulvic acids contain organic free radicals as an internal part of their molecular structure. The concentration of unpaired electrons will increase by increasing the pH. The unpaired electron in fulvic acid interacts with the unpaired electron on copper(II) through the Π system, and this will decrease the spin concentration of fulvic acid complexed with copper(II). The displacement of titration curve from a free ligand (fructose-1,6-diphosphate, ribulose-1,5-diphosphate, phospherine, phosphothreonine, and 3-phosphoglyceric acid, to a ligand plus copper(II) (1:1 ratio) shows there is a strong interaction between copper(II) and the corresponding ligand. All complexes absorb UV-visible at 250-300 nm. The absorption intensity changes as a function of pH. Copper (II) forms a complex with fructose-1,6-diphosphate, ribulose-1,5-diphosphate, phosphoserine, phosphothreonine, and 3-phosphoglyceric acid by the ratio of 1:3, 1:3, 1:1, 1:1, and 1:2, respectively.
Date: December 1984
Creator: Amani, Saeid
Partner: UNT Libraries

Study of Substituted Benzenesulfonate-Containing Layered Double Hydroxides and Investigation of the Hexamethylenetetramine Route of LDH Synthesis

Description: Benzenesulfonates, para-substituted with amine, chloride and methyl groups were successfully incorporated into layered double hydroxides of two different compositions, 2:1 Mg-Al LDH and 2:1 Zn-Al LDH. These parent materials were also doped with small amounts of nickel and the differences in the two systems were studied. The hexamethylenetetramine route of layered double hydroxide synthesis was investigated to verify if the mechanism is indeed homogeneous. This included attempting preparation of 2:1 Mg-Al LDH, 2:1 Zn-Al LDH and 2:1 Zn-Cr LDH with two different concentrations of hexamethylenetetramine. The analytical data of the products suggest that the homogeneous precipitation may not be the true mechanism of reaction involved in LDH synthesis by this method.
Date: May 2007
Creator: Ambadapadi, Sriram
Partner: UNT Libraries

A Study of the Reduction Products of N-(4-Nitrophenacyl)-4-(1-Hexyl)pyridinium Bromide

Description: Because of the structural analogies between these compounds and several other physiologically active compounds, such as chloroamphenicol, 4,4'-diaminodiphenyl sulfone, and 2,2-bis-(p-aminophenyl)-1,1,1-trichloroethane, a more complete study of the reduction products and the sequence of catalytic reduction of N-(4-nitrophenacyl)-4-(1-hexyl)pyridinium bromide was made in this investigation.
Date: 1950
Creator: Arnwine, Bennie C.
Partner: UNT Libraries

Interfacial Electrochemistry of Metal Nanoparticles Formation on Diamond and Copper Electroplating on Ruthenium Surface

Description: An extremely facile and novel method called spontaneous deposition, to deposit noble metal nanoparticles on a most stable form of carbon (C) i.e. diamond is presented. Nanometer sized particles of such metals as platinum (Pt), palladium (Pd), gold (Au), copper (Cu) and silver (Ag) could be deposited on boron-doped (B-doped) polycrystalline diamond films grown on silicon (Si) substrates, by simply immersing the diamond/Si sample in hydrofluoric acid (HF) solution containing ions of the corresponding metal. The electrons for the reduction of metal ions came from the Si back substrate. The diamond/Si interfacial ohmic contact was of paramount importance to the observation of the spontaneous deposition process. The metal/diamond (M/C) surfaces were investigated using Raman spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and x-ray diffractometry (XRD). The morphology (i.e. size and distribution) of metal nanoparticles deposits could be controlled by adjusting the metal ion concentration, HF concentration and deposition time. XRD data indicate the presence of textured and strained crystal lattices of Pd for different Pd/C morphologies, which seem to influence the electrocatalytic oxidation of formaldehyde (HCHO). The sensitivity of electrocatalytic reactions to surface crystal structure implies that M/C could be fabricated for specific electrocatalytic applications. The research also presents electroplating of Cu on ruthenium (Ru), which a priori is a promising barrier material for Cu interconnects in the sub 0.13 μm generation integrated circuits (ICs). Cu plates on Ru with over 90% efficiency. The electrochemical nucleation and growth studies using the potentiostatic current transient method showed a predominantly progressive nucleation of Cu on Ru. This was also supported by SEM imaging, which showed that continuous thin films of Cu (ca. 400 Å) with excellent conformity could be plated over Ru without dendrite formation. Scotch tape peel tests and SEM on Cu/Ru samples both at room temperature (RT) and ...
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2003
Creator: Arunagiri, Tiruchirapalli Natarajan
Partner: UNT Libraries

Sensitization of Lanthanides and Organic-Based Phosphorescence via Energy Transfer and Heavy-Atom Effects

Description: The major topics discussed are the phosphorescence sensitization in the lanthanides via energy transfer and in the organics by heavy atom effects. The f-f transitions in lanthanides are parity forbidden and have weak molar extinction coefficients. Upon complexation with the ligand, ttrpy (4'-p-Tolyl-[2,2':6',2"]-terpyridine) the absorption takes place through the ligand and the excitation is transferred to the lanthanides, which in turn emit. This process is known as "sensitized luminescence." Bright red emission from europium and bright green emission from terbium complexes were observed. There is ongoing work on the making of OLEDs with neutral complexes of lanthanide hexafluoroacetyl acetonate/ttrpy, studied in this dissertation. Attempts to observe analogous energy transfer from the inorganic donor complexes of Au(I) thiocyanates were unsuccessful due to poor overlap of the emissions of these systems with the absorptions of Eu(III) and Tb(III). Photophysics of silver-aromatic complexes deals with the enhancement of phosphorescence in the aromatics. The heavy atom effect of the silver is responsible for this enhancement in phosphorescence. Aromatics such as naphthalene, perylene, anthracene and pyrene were involved in this study. Stern Volmer plots were studied by performing the quenching studies. The quenchers employed were both heavy metals such as silver and thallium and lighter metal like potassium. Dynamic quenching as the predominant phenomenon was noticed.
Date: May 2010
Creator: Arvapally, Ravi K.
Partner: UNT Libraries

Sites of Reactivity During Ligand-Exchange Reactions in Octahedral Group VIB Metal Carbonyls

Description: The site of initial metal-carbonyl bond-breaking during ligand-exchange reactions in a series of octahedral metal carbonyls of the type (L2)M(CO)4 (M = Cr, Mo, W; L2 = diphos, phen, dipy) has been determined employing infrared spectroscopy and Fourier transform nuclear magnetic resonance spectroscopy. The results of this study reveal, for all metal carbonyl complexes of the type mentioned above, that loss of CO occurs exclusively at an axial position (cis to the bidentate ligand, I^)• The dynamic nature of the five-coordinate intermediates, such as (diphos)Mo(CO)3, (phen)M(CO)3 (M = Cr, Mo, W), and (dipy)Cr(CO)3, which are generated in solution upon CO dissociation, is reported and discussed. The results of this investigation confirm that these intermediates are fluxional on the time scale of CO-exchange process. A mechanism which describes the site of initial metal-carbonyl bond-breaking and the fluxionality of the five-coordinate intermediate during ligand-exchange reactions in the complexes (L2)M(CO)4 is proposed. A kinetic study of reactions of W(CO)6 with pseudo-halide anions (NCS-, NCO-, CN-) has been initiated. The results indicate that these reactions proceed via a bimolecular path, which involves initial attack of the pseudo-halide anion at a carbonyl carbon of W(CO)6,
Date: December 1979
Creator: Asali, Khalil Jamil
Partner: UNT Libraries

Studies of spin alignment in ferrocenylsilane compounds and in regiospecific oxidation reactions of 1,9-dimethylpentacyclo [5.4.0.02,6.03,10.05,9]undecane-8,11-dione.

Description: Part I. The syntheses of a series of stable ferrocenylsilane compounds and their corresponding polyradical cations are reported. Electron spin properties of these molecules were investigated by cyclic voltammetry, ESR, and magnetic susceptibility measurements. All the compounds presented, showed significant electronic communication (>100 mV) between the redox centers by CV. Part II. Baeyer-Villiger oxidation of (1,9-dimethyl-PCU-8,11-dione) was performed using m-chloroperoxybenzoic acid in 1:2 molar ratios. The product obtained was the corresponding dilactone 113. The structure of the reaction products was established unequivocally via single crystal X-ray diffraction methods. The reaction of the 1,9-dimethyl-PCU-8,11-dione with 1:1 molar ratio of m-chloroperoxybenzoic acid produced again the dilactone 113, and not the expected monolactone 114. Ceric ammonium nitrate (CAN) promoted oxidation reaction of 1,9-dimethyl-PCU-8,11-dione afforded a mixture of dimethylated lactones, which indicated unique reaction mechanism pathways. These individual isomers, 115 and 116, have been isolated from these mixtures via column chromatography by using silica gel as adsorbent followed by fractional recrystallization of individual chromatography fractions. Structures of these pure products have been established unequivocally by application of single crystal X-ray crystallographic methods.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2006
Creator: Atim, Silvia
Partner: UNT Libraries

Manufacturer [Sic] of Densified-Refuse Derived Fuel (d-RDF) Pellets and Methods for the Determination of d-RDF Pellet Densities

Description: There are 150 million tons of Municipal Solid Waste (MSW) annually produced in the United States, which is approximately equivalent to 150 million barrels of oil. MSW production is inexhaustible, and is increasing on an annual per capita basis of approximately three per cent. After controlling the moisture and adding a binder, the combustible portion of MSW was converted to pellets. The objects of this project were to 1) evaluate the binder, 2) prepare the pellets, and 3) evaluate the pellets with regard to density. The manufacture of pellets was conducted at the Naval Air Station, Jacksonville, Florida. The evaluation of the binders and the pellets was done at North Texas State University (NTSU). There were three procedures for measuring the density. The first, using water displacement, was from the American Society for Testing and Material (ASTM). The second, using wax coating, was also from ASTM. The third, using sharply-cut cylindrical pellets, was developed at NTSU.
Date: December 1986
Creator: Attili, Bassam Saleem
Partner: UNT Libraries

Thermal and Flash Photolysis Studies of Ligand-Exchange Reactions of Substituted Metal Carbonyl Complexes of Cr and Mo

Description: Thermal and flash photolysis studies of ligand-substitution reactions of cis-(pip)(L)M(CO)_4 by L' (pip = piperidine; L, L' = CO, phosphines, phosphites; M = Cr, Mo) implicate square-pyramidal [(L)M(CO)_4], in which L occupies a coordination site in the equatorial plane, as the reactive species. In chlorobenzene (= CB) solvent, the predominant species formed after flash photolysis and a steady-state intermediate for the thermal reaction is cis—[(CB)(L)M(CO)_4], for which rates of CB-dissociation increase with increasing steric demands of coordinated L. Rates of CB-dissociation from trans-[(CB)(L)M(CO)_4] intermediates, formed after photolysis but not thermally, exhibit no observable dependence on the steric properties of the coordinated L.
Date: May 1989
Creator: Awad, Hani H. (Hani Hanna)
Partner: UNT Libraries