UNT Theses and Dissertations - 4 Matching Results

Search Results

Automatic Speech Recognition Using Finite Inductive Sequences

Description: This dissertation addresses the general problem of recognition of acoustic signals which may be derived from speech, sonar, or acoustic phenomena. The specific problem of recognizing speech is the main focus of this research. The intention is to design a recognition system for a definite number of discrete words. For this purpose specifically, eight isolated words from the T1MIT database are selected. Four medium length words "greasy," "dark," "wash," and "water" are used. In addition, four short words are considered "she," "had," "in," and "all." The recognition system addresses the following issues: filtering or preprocessing, training, and decision-making. The preprocessing phase uses linear predictive coding of order 12. Following the filtering process, a vector quantization method is used to further reduce the input data and generate a finite inductive sequence of symbols representative of each input signal. The sequences generated by the vector quantization process of the same word are factored, and a single ruling or reference template is generated and stored in a codebook. This system introduces a new modeling technique which relies heavily on the basic concept that all finite sequences are finitely inductive. This technique is used in the training stage. In order to accommodate the variabilities in speech, the training is performed casualty, and a large number of training speakers is used from eight different dialect regions. Hence, a speaker independent recognition system is realized. The matching process compares the incoming speech with each of the templates stored, and a closeness ration is computed. A ratio table is generated anH the matching word that corresponds to the smallest ratio (i.e. indicating that the ruling has removed most of the symbols) is selected. Promising results were obtained for isolated words, and the recognition rates ranged between 50% and 100%.
Date: August 1996
Creator: Cherri, Mona Youssef, 1956-
Partner: UNT Libraries

Rollback Reduction Techniques Through Load Balancing in Optimistic Parallel Discrete Event Simulation

Description: Discrete event simulation is an important tool for modeling and analysis. Some of the simulation applications such as telecommunication network performance, VLSI logic circuits design, battlefield simulation, require enormous amount of computing resources. One way to satisfy this demand for computing power is to decompose the simulation system into several logical processes (Ip) and run them concurrently. In any parallel discrete event simulation (PDES) system, the events are ordered according to their time of occurrence. In order for the simulation to be correct, this ordering has to be preserved. There are three approaches to maintain this ordering. In a conservative system, no lp executes an event unless it is certain that all events with earlier time-stamps have been executed. Such systems are prone to deadlock. In an optimistic system on the other hand, simulation progresses disregarding this ordering and saves the system states regularly. Whenever a causality violation is detected, the system rolls back to a state saved earlier and restarts processing after correcting the error. There is another approach in which all the lps participate in the computation of a safe time-window and all events with time-stamps within this window are processed concurrently. In optimistic simulation systems, there is a global virtual time (GVT), which is the minimum of the time-stamps of all the events existing in the system. The system can not rollback to a state prior to GVT and hence all such states can be discarded. GVT is used for memory management, load balancing, termination detection and committing of events. However, GVT computation introduces additional overhead. In optimistic systems, large number of rollbacks can degrade the system performance considerably. We have studied the effect of load balancing in reducing the number of rollbacks in such systems. We have designed three load balancing algorithms and implemented two of ...
Date: May 1996
Creator: Sarkar, Falguni
Partner: UNT Libraries

Practical Parallel Processing

Description: The physical limitations of uniprocessors and the real-time requirements of numerous practical applications have made parallel processing an essential technology in military, industry and scientific research. In this dissertation, we investigate parallelizations of three practical applications using three parallel machine models. The algorithms are: Finitely inductive (FI) sequence processing is a pattern recognition technique used in many fields. We first propose four parallel FI algorithms on the EREW PRAM. The time complexity of the parallel factoring and following by bucket packing is O(sk^2 n/p), and they are optimal under some conditions. The parallel factoring and following by hashing requires O(sk^2 n/p) time when uniform hash functions are used and log(p) ≤ k n/p and pm ≈ n. Their speedup is proportional to the number processors used. For these results, s is the number of levels, k is the size of the antecedents and n is the length of the input sequence and p is the number of processors. We also describe algorithms for raster/vector conversion based on the scan model to handle block-like connected components of arbitrary geometrical shapes with multi-level nested dough nuts for the IES (image exploitation system). Both the parallel raster-to-vector algorithm and parallel vector-to-raster algorithm require O(log(n2)) or O(log2(n2)) time (depending on the sorting algorithms used) for images of size n2 using p = n2 processors. Not only is the DWT (discrete wavelet transforms) useful in data compression, but also has it potentials in signal processing, image processing, and graphics. Therefore, it is of great importance to investigate efficient parallelizations of the wavelet transforms. The time complexity of the parallel forward DWT on the parallel virtual machine with linear processor organization is O(((so+s1)mn)/p), where s0 and s1 are the lengths of the filters and p is the number of processors used. The time complexity of the ...
Date: August 1996
Creator: Zhang, Hua, 1954-
Partner: UNT Libraries

A Machine Learning Method Suitable for Dynamic Domains

Description: The efficacy of a machine learning technique is domain dependent. Some machine learning techniques work very well for certain domains but are ill-suited for other domains. One area that is of real-world concern is the flexibility with which machine learning techniques can adapt to dynamic domains. Currently, there are no known reports of any system that can learn dynamic domains, short of starting over (i.e., re-running the program). Starting over is neither time nor cost efficient for real-world production environments. This dissertation studied a method, referred to as Experience Based Learning (EBL), that attempts to deal with conditions related to learning dynamic domains. EBL is an extension of Instance Based Learning methods. The hypothesis of the study related to this research was that the EBL method would automatically adjust to domain changes and still provide classification accuracy similar to methods that require starting over. To test this hypothesis, twelve widely studied machine learning datasets were used. A dynamic domain was simulated by presenting these datasets in an uninterrupted cycle of train, test, and retrain. The order of the twelve datasets and the order of records within each dataset were randomized to control for order biases in each of ten runs. As a result, these methods provided datasets that represent extreme levels of domain change. Using the above datasets, EBL's mean classification accuracies for each dataset were compared to the published static domain results of other machine learning systems. The results indicated that the EBL's system performance was not statistically different (p>0.30) from the other machine learning methods. These results indicate that the EBL system is able to adjust to an extreme level of domain change and yet produce satisfactory results. This finding supports the use of the EBL method in real-world environments that incur rapid changes to both variables and ...
Date: July 1996
Creator: Rowe, Michael C. (Michael Charles)
Partner: UNT Libraries