UNT Theses and Dissertations - 9 Matching Results

Search Results

Practical Cursive Script Recognition

Description: This research focused on the off-line cursive script recognition application. The problem is very large and difficult and there is much room for improvement in every aspect of the problem. Many different aspects of this problem were explored in pursuit of solutions to create a more practical and usable off-line cursive script recognizer than is currently available.
Date: August 1995
Creator: Carroll, Johnny Glen, 1953-
Partner: UNT Libraries

Automatic Speech Recognition Using Finite Inductive Sequences

Description: This dissertation addresses the general problem of recognition of acoustic signals which may be derived from speech, sonar, or acoustic phenomena. The specific problem of recognizing speech is the main focus of this research. The intention is to design a recognition system for a definite number of discrete words. For this purpose specifically, eight isolated words from the T1MIT database are selected. Four medium length words "greasy," "dark," "wash," and "water" are used. In addition, four short words are considered "she," "had," "in," and "all." The recognition system addresses the following issues: filtering or preprocessing, training, and decision-making. The preprocessing phase uses linear predictive coding of order 12. Following the filtering process, a vector quantization method is used to further reduce the input data and generate a finite inductive sequence of symbols representative of each input signal. The sequences generated by the vector quantization process of the same word are factored, and a single ruling or reference template is generated and stored in a codebook. This system introduces a new modeling technique which relies heavily on the basic concept that all finite sequences are finitely inductive. This technique is used in the training stage. In order to accommodate the variabilities in speech, the training is performed casualty, and a large number of training speakers is used from eight different dialect regions. Hence, a speaker independent recognition system is realized. The matching process compares the incoming speech with each of the templates stored, and a closeness ration is computed. A ratio table is generated anH the matching word that corresponds to the smallest ratio (i.e. indicating that the ruling has removed most of the symbols) is selected. Promising results were obtained for isolated words, and the recognition rates ranged between 50% and 100%.
Date: August 1996
Creator: Cherri, Mona Youssef, 1956-
Partner: UNT Libraries

Computational Complexity of Hopfield Networks

Description: There are three main results in this dissertation. They are PLS-completeness of discrete Hopfield network convergence with eight different restrictions, (degree 3, bipartite and degree 3, 8-neighbor mesh, dual of the knight's graph, hypercube, butterfly, cube-connected cycles and shuffle-exchange), exponential convergence behavior of discrete Hopfield network, and simulation of Turing machines by discrete Hopfield Network.
Date: August 1998
Creator: Tseng, Hung-Li
Partner: UNT Libraries

A Multi-Time Scale Learning Mechanism for Neuromimic Processing

Description: Learning and representing and reasoning about temporal relations, particularly causal relations, is a deep problem in artificial intelligence (AI). Learning such representations in the real world is complicated by the fact that phenomena are subject to multiple time scale influences and may operate with a strange attractor dynamic. This dissertation proposes a new computational learning mechanism, the adaptrode, which, used in a neuromimic processing architecture may help to solve some of these problems. The adaptrode is shown to emulate the dynamics of real biological synapses and represents a significant departure from the classical weighted input scheme of conventional artificial neural networks. Indeed the adaptrode is shown, by analysis of the deep structure of real synapses, to have a strong structural correspondence with the latter in terms of multi-time scale biophysical processes. Simulations of an adaptrode-based neuron and a small network of neurons are shown to have the same learning capabilities as invertebrate animals in classical conditioning. Classical conditioning is considered a fundamental learning task in animals. Furthermore, it is subject to temporal ordering constraints that fulfill the criteria of causal relations in natural systems. It may offer clues to the learning of causal relations and mechanisms for causal reasoning. The adaptrode is shown to solve an advanced problem in classical conditioning that addresses the problem of real world dynamics. A network is able to learn multiple, contrary associations that separate in time domains, that is a long-term memory can co-exist with a short-term contrary memory without destroying the former. This solves the problem of how to deal with meaningful transients while maintaining long-term memories. Possible applications of adaptrode-based neural networks are explored and suggestions for future research are made.
Date: August 1994
Creator: Mobus, George E. (George Edward)
Partner: UNT Libraries

A Unifying Version Model for Objects and Schema in Object-Oriented Database System

Description: There have been a number of different versioning models proposed. The research in this area can be divided into two categories: object versioning and schema versioning. In this dissertation, both problem domains are considered as a single unit. This dissertation describes a unifying version model (UVM) for maintaining changes to both objects and schema. UVM handles schema versioning operations by using object versioning techniques. The result is that the UVM allows the OODBMS to be much smaller than previous systems. Also, programmers need know only one set of versioning operations; thus, reducing the learning time by half. This dissertation shows that UVM is a simple but semantically sound and powerful version model for both objects and schema.
Date: August 1997
Creator: Shin, Dongil
Partner: UNT Libraries

Practical Parallel Processing

Description: The physical limitations of uniprocessors and the real-time requirements of numerous practical applications have made parallel processing an essential technology in military, industry and scientific research. In this dissertation, we investigate parallelizations of three practical applications using three parallel machine models. The algorithms are: Finitely inductive (FI) sequence processing is a pattern recognition technique used in many fields. We first propose four parallel FI algorithms on the EREW PRAM. The time complexity of the parallel factoring and following by bucket packing is O(sk^2 n/p), and they are optimal under some conditions. The parallel factoring and following by hashing requires O(sk^2 n/p) time when uniform hash functions are used and log(p) ≤ k n/p and pm ≈ n. Their speedup is proportional to the number processors used. For these results, s is the number of levels, k is the size of the antecedents and n is the length of the input sequence and p is the number of processors. We also describe algorithms for raster/vector conversion based on the scan model to handle block-like connected components of arbitrary geometrical shapes with multi-level nested dough nuts for the IES (image exploitation system). Both the parallel raster-to-vector algorithm and parallel vector-to-raster algorithm require O(log(n2)) or O(log2(n2)) time (depending on the sorting algorithms used) for images of size n2 using p = n2 processors. Not only is the DWT (discrete wavelet transforms) useful in data compression, but also has it potentials in signal processing, image processing, and graphics. Therefore, it is of great importance to investigate efficient parallelizations of the wavelet transforms. The time complexity of the parallel forward DWT on the parallel virtual machine with linear processor organization is O(((so+s1)mn)/p), where s0 and s1 are the lengths of the filters and p is the number of processors used. The time complexity of the ...
Date: August 1996
Creator: Zhang, Hua, 1954-
Partner: UNT Libraries

Study of Parallel Algorithms Related to Subsequence Problems on the Sequent Multiprocessor System

Description: The primary purpose of this work is to study, implement and analyze the performance of parallel algorithms related to subsequence problems. The problems include string to string correction problem, to determine the longest common subsequence problem and solving the sum-range-product, 1 —D pattern matching, longest non-decreasing (non-increasing) (LNS) and maximum positive subsequence (MPS) problems. The work also includes studying the techniques and issues involved in developing parallel applications. These algorithms are implemented on the Sequent Multiprocessor System. The subsequence problems have been defined, along with performance metrics that are utilized. The sequential and parallel algorithms have been summarized. The implementation issues which arise in the process of developing parallel applications have been identified and studied.
Date: August 1994
Creator: Pothuru, Surendra
Partner: UNT Libraries

An Efficient Hybrid Heuristic and Probabilistic Model for the Gate Matrix Layout Problem in VLSI Design

Description: In this thesis, the gate matrix layout problem in VLSI design is considered where the goal is to minimize the number of tracks required to layout a given circuit and a taxonomy of approaches to its solution is presented. An efficient hybrid heuristic is also proposed for this combinatorial optimization problem, which is based on the combination of probabilistic hill-climbing technique and greedy method. This heuristic is tested experimentally with respect to four existing algorithms. As test cases, five benchmark problems from the literature as well as randomly generated problem instances are considered. The experimental results show that the proposed hybrid algorithm, on the average, performs better than other heuristics in terms of the required computation time and/or the quality of solution. Due to the computation-intensive nature of the problem, an exact solution within reasonable time limits is impossible. So, it is difficult to judge the effectiveness of any heuristic in terms of the quality of solution (number of tracks required). A probabilistic model of the gate matrix layout problem that computes the expected number of tracks from the given input parameters, is useful to this respect. Such a probabilistic model is proposed in this thesis, and its performance is experimentally evaluated.
Date: August 1993
Creator: Bagchi, Tanuj
Partner: UNT Libraries

Linearly Ordered Concurrent Data Structures on Hypercubes

Description: This thesis presents a simple method for the concurrent manipulation of linearly ordered data structures on hypercubes. The method is based on the existence of a pruned binomial search tree rooted at any arbitrary node of the binary hypercube. The tree spans any arbitrary sequence of n consecutive nodes containing the root, using a fan-out of at most [log₂ 𝑛] and a depth of [log₂ 𝑛] +1. Search trees spanning non-overlapping processor lists are formed using only local information, and can be used concurrently without contention problems. Thus, they can be used for performing broadcast and merge operations simultaneously on sets with non-uniform sizes. Extensions to generalized and faulty hypercubes and applications to image processing algorithms and for m-way search are discussed.
Date: August 1992
Creator: John, Ajita
Partner: UNT Libraries