UNT Theses and Dissertations - Browse

ABOUT BROWSE FEED

Descriptions and Computation of Ultrapowers in L(R)

Description: The results from this dissertation are an exact computation of ultrapowers by measures on cardinals $\aleph\sb{n},\ n\in w$, in $L(\IR$), and a proof that ordinals in $L(\IR$) below $\delta\sbsp{5}{1}$ represented by descriptions and the identity function with respect to sequences of measures are cardinals. An introduction to the subject with the basic definitions and well known facts is presented in chapter I. In chapter II, we define a class of measures on the $\aleph\sb{n},\ n\in\omega$, in $L(\IR$) and derive a formula for an exact computation of the ultrapowers of cardinals by these measures. In chapter III, we give the definitions of descriptions and the lowering operator. Then we prove that ordinals represented by descriptions and the identity function are cardinals. This result combined with the fact that every cardinal $<\delta\sbsp{5}{1}$ in $L(\IR$) is represented by a description (J1), gives a characterization of cardinals in $L(\IR$) below $\delta\sbsp{5}{1}. Concrete examples of formal computations are shown in chapter IV.
Date: August 1995
Creator: Khafizov, Farid T.
Partner: UNT Libraries

Descriptive Set Theory and Measure Theory in Locally Compact and Non-locally Compact Groups

Description: In this thesis we study descriptive-set-theoretic and measure-theoretic properties of Polish groups, with a thematic emphasis on the contrast between groups which are locally compact and those which are not. The work is divided into three major sections. In the first, working jointly with Robert Kallman, we resolve a conjecture of Gleason regarding the Polish topologization of abstract groups of homeomorphisms. We show that Gleason's conjecture is false, and its conclusion is only true when the hypotheses are considerably strengthened. Along the way we discover a new automatic continuity result for a class of functions which behave like but are distinct from functions of Baire class 1. In the second section we consider the descriptive complexity of those subsets of the permutation group S? which arise naturally from the classical Levy-Steinitz series rearrangement theorem. We show that for any conditionally convergent series of vectors in Euclidean space, the sets of permutations which make the series diverge, and diverge properly, are ?03-complete. In the last section we study the phenomenon of Haar null sets a la Christensen, and the closely related notion of openly Haar null sets. We identify and correct a minor error in the proof of Mycielski that a countable union of Haar null sets in a Polish group is Haar null. We show the openly Haar null ideal may be distinct from the Haar null ideal, which resolves an uncertainty of Solecki. We show that compact sets are always Haar null in S? and in any countable product of locally compact non-compact groups, which extends the domain of a result of Dougherty. We show that any countable product of locally compact non-compact groups decomposes into the disjoint union of a meager set and a Haar null set, which gives a partial positive answer to a question of Darji. ...
Date: May 2013
Creator: Cohen, Michael Patrick
Partner: UNT Libraries

A Detailed Proof of the Prime Number Theorem for Arithmetic Progressions

Description: We follow a research paper that J. Elstrodt published in 1998 to prove the Prime Number Theorem for arithmetic progressions. We will review basic results from Dirichlet characters and L-functions. Furthermore, we establish a weak version of the Wiener-Ikehara Tauberian Theorem, which is an essential tool for the proof of our main result.
Date: May 2004
Creator: Vlasic, Andrew
Partner: UNT Libraries

Determinacy-related Consequences on Limit Superiors

Description: Laczkovich proved from ZF that, given a countable sequence of Borel sets on a perfect Polish space, if the limit superior along every subsequence was uncountable, then there was a particular subsequence whose intersection actually contained a perfect subset. Komjath later expanded the result to hold for analytic sets. In this paper, by adding AD and sometimes V=L(R) to our assumptions, we will extend the result further. This generalization will include the increasing of the length of the sequence to certain uncountable regular cardinals as well as removing any descriptive requirements on the sets.
Date: May 2013
Creator: Walker, Daniel
Partner: UNT Libraries

Determining Properties of Synaptic Structure in a Neural Network through Spike Train Analysis

Description: A "complex" system typically has a relatively large number of dynamically interacting components and tends to exhibit emergent behavior that cannot be explained by analyzing each component separately. A biological neural network is one example of such a system. A multi-agent model of such a network is developed to study the relationships between a network's structure and its spike train output. Using this model, inferences are made about the synaptic structure of networks through cluster analysis of spike train summary statistics A complexity measure for the network structure is also presented which has a one-to-one correspondence with the standard time series complexity measure sample entropy.
Date: May 2007
Creator: Brooks, Evan
Partner: UNT Libraries

A Development of the Peano Postulates

Description: The purpose of this paper is to develop the Peano postulates from a weaker axiom system than the system used by John L. Kelley in General Topology. The axiom of regularity which states "If X is a non-empty set, then there is a member Y of X such that the intersection of X and Y is empty." is not assumed in this thesis. The axiom of amalgamation which states "If X is a set, then the union of the elements of X is a set." is also not assumed. All other axioms used by Kelley relevant to the Peano postulates are assumed. The word class is never used in the thesis, though the variables can be interpreted as classes.
Date: May 1963
Creator: Peek, Darwin Eugene
Partner: UNT Libraries

A Development of the Real Number System

Description: The purpose of this paper is to construct the real number system. The foundation upon which the real number system will be constructed will be the system of counting numbers.
Date: August 1961
Creator: Matthews, Ronald Louis
Partner: UNT Libraries

Differentiable Functions

Description: The primary purpose of this thesis is to carefully develop and prove some of the fundamental, classical theorems of the differential calculus for functions of two real variables.
Date: June 1966
Creator: McCool, Kenneth B.
Partner: UNT Libraries

Dimension spectrum and graph directed Markov systems.

Description: In this dissertation we study graph directed Markov systems (GDMS) and limit sets associated with these systems. Given a GDMS S, by the Hausdorff dimension spectrum of S we mean the set of all positive real numbers which are the Hausdorff dimension of the limit set generated by a subsystem of S. We say that S has full Hausdorff dimension spectrum (full HD spectrum), if the dimension spectrum is the interval [0, h], where h is the Hausdorff dimension of the limit set of S. We give necessary conditions for a finitely primitive conformal GDMS to have full HD spectrum. A GDMS is said to be regular if the Hausdorff dimension of its limit set is also the zero of the topological pressure function. We show that every number in the Hausdorff dimension spectrum is the Hausdorff dimension of a regular subsystem. In the particular case of a conformal iterated function system we show that the Hausdorff dimension spectrum is compact. We introduce several new systems: the nearest integer GDMS, the Gauss-like continued fraction system, and the Renyi-like continued fraction system. We prove that these systems have full HD spectrum. A special attention is given to the backward continued fraction system that we introduce and we prove that it has full HD spectrum. This system turns out to be a parabolic iterated function system and this makes the analysis more involved. Several examples have been constructed in the past of systems not having full HD spectrum. We give an example of such a system whose limit set has positive Lebesgue measure.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2006
Creator: Ghenciu, Eugen Andrei
Partner: UNT Libraries

Dimension Theory

Description: This paper contains a discussion of topological dimension theory. Original proofs of theorems, as well as a presentation of theorems and proofs selected from Ryszard Engelking's Dimension Theory are contained within the body of this endeavor. Preliminary notation is introduced in Chapter I. Chapter II consists of the definition of and theorems relating to the small inductive dimension function Ind. Large inductive dimension is investigated in Chapter III. Chapter IV comprises the definition of covering dimension and theorems discussing the equivalence of the different dimension functions in certain topological settings. Arguments pertaining to the dimension o f Jn are also contained in Chapter IV.
Date: August 1986
Creator: Frere, Scot M. (Scot Martin)
Partner: UNT Libraries

Dimensions in Random Constructions.

Description: We consider random fractals generated by random recursive constructions, prove zero-one laws concerning their dimensions and find their packing and Minkowski dimensions. Also we investigate the packing measure in corresponding dimension. For a class of random distribution functions we prove that their packing and Hausdorff dimensions coincide.
Date: May 2002
Creator: Berlinkov, Artemi
Partner: UNT Libraries

Direct Sums of Rings

Description: This paper consists of a study of the direct sum U of two rings S and T. Such a direct sum is defined as the set of all ordered pairs (s1, t1), where s1 is an arbitrary element in S and t1 is an arbitrary element in T.
Date: August 1966
Creator: Hughes, Dolin F.
Partner: UNT Libraries

Dually Semimodular Consistent Lattices

Description: A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all the elements covering x, and the rank of x; the maximum reach of all elements in L is the reach of L. Sharp lower bounds for the total number of elements and the number of elements of a given reach in a semimodular consistent lattice given the rank, the reach, and the number of join-irreducibles are found. Extremal lattices attaining these bounds are described. Similar results are then obtained for finite dually semimodular consistent lattices.
Date: May 1988
Creator: Gragg, Karen E. (Karen Elizabeth)
Partner: UNT Libraries

Duals and Weak Completeness in Certain Sequence Spaces

Description: In this paper the weak completeness of certain sequence spaces is examined. In particular, we show that each of the sequence spaces c0 and 9, 1 < p < c, is a Banach space. A Riesz representation for the dual space of each of these sequence spaces is given. A Riesz representation theorem for Hilbert space is also proven. In the third chapter we conclude that any reflexive space is weakly (sequentially) complete. We give 01 as an example of a non-reflexive space that is weakly complete. Two examples, c0 and YJ, are given of spaces that fail to be weakly complete.
Date: August 1980
Creator: Leavelle, Tommy L. (Tommy Lee)
Partner: UNT Libraries

The Dyadic Operator Approach to a Study in Conics, with some Extensions to Higher Dimensions

Description: The discovery of a new truth in the older fields of mathematics is a rare event. Here an investigator may hope at best to secure greater elegance in method or notation, or to extend known results by some process of generalization. It is our purpose to make a study of conic sections in the spirit of the above remark, using the symbolism developed by Josiah Williard Gibbs.
Date: 1940
Creator: Shawn, James Loyd
Partner: UNT Libraries

Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension

Description: This dissertation is a study of the dynamics of one-dimensional unimodal maps and is mainly concerned with those maps which are trapezoidal. The trapezoidal function, f_e, is defined for eΣ(0,1/2) by f_e(x)=x/e for xΣ[0,e], f_e(x)=1 for xΣ(e,1-e), and f_e(x)=(1-x)/e for xΣ[1-e,1]. We study the symbolic dynamics of the kneading sequences and relate them to the analytic dynamics of these maps. Chapter one is an overview of the present theory of Metropolis, Stein, and Stein (MSS). In Chapter two a formula is given that counts the number of MSS sequences of length n. Next, the number of distinct primitive colorings of n beads with two colors, as counted by Gilbert and Riordan, is shown to equal the number of MSS sequences of length n. An algorithm is given that produces a bisection between these two quantities for each n. Lastly, the number of negative orbits of size n for the function f(z)=z^2-2, as counted by P.J. Myrberg, is shown to equal the number of MSS sequences of length n. For an MSS sequence P, let H_ϖ(P) be the unique common extension of the harmonics of P. In Chapter three it is proved that there is exactly one J(P)Σ[0,1] such that the itinerary of λ(P) under the map is λ(P)f_e is H_ϖ(P). In Chapter four it is shown that only period doubling or period halving bifurcations can occur for the family λf_e, λΣ[0,1]. Results concerning how the size of a stable orbit changes as bifurcations of the family λf_e occur are given. Let λΣ[0,1] be such that 1/2 is a periodic point of λf_e. In this case 1/2 is superstable. Chapter five investigates the boundary of the basin of attraction of this stable orbit. An algorithm is given that yields a graph directed construction such that the object constructed is the basin ...
Date: May 1988
Creator: Brucks, Karen M. (Karen Marie), 1957-
Partner: UNT Libraries

Dynamics, Thermodynamic formalism and Perturbations of Transcendental Entire Functions of Finite Singular Type

Description: In this dissertation, we study the dynamics, fractal geometry and the topology of the Julia set of functions in the family H which is a set in the class S, the Speiser class of entire transcendental functions which have only finitely many singular values. One can think of a function from H as a generalized expanding function from the cosh family. We shall build a version of thermodynamic formalism for functions in H and we shall show among others, the existence and uniqueness of a conformal measure. Then we prove a Bowen's type formula, i.e. we show that the Hausdorff dimension of the set of returning points, is the unique zero of the pressure function. We shall also study conjugacies in the family H, perturbation of functions in the family and related dynamical properties. We define Perron-Frobenius operators for some functions naturally associated with functions in the family H and then, using fundamental properties of these operators, we shall prove the important result that the Hausdorff dimension of the subset of returning points depends analytically on the parameter taken from a small open subset of the n-dimensional parameter space.
Date: May 2005
Creator: Coiculescu, Ion
Partner: UNT Libraries