UNT Theses and Dissertations - 206 Matching Results

Search Results

The enhancement of machine translation for low-density languages using Web-gathered parallel texts.

Description: The majority of the world's languages are poorly represented in informational media like radio, television, newspapers, and the Internet. Translation into and out of these languages may offer a way for speakers of these languages to interact with the wider world, but current statistical machine translation models are only effective with a large corpus of parallel texts - texts in two languages that are translations of one another - which most languages lack. This thesis describes the Babylon project which attempts to alleviate this shortage by supplementing existing parallel texts with texts gathered automatically from the Web -- specifically targeting pages that contain text in a pair of languages. Results indicate that parallel texts gathered from the Web can be effectively used as a source of training data for machine translation and can significantly improve the translation quality for text in a similar domain. However, the small quantity of high-quality low-density language parallel texts on the Web remains a significant obstacle.
Date: December 2007
Creator: Mohler, Michael Augustine Gaylord
Partner: UNT Libraries

Evaluating the Scalability of SDF Single-chip Multiprocessor Architecture Using Automatically Parallelizing Code

Description: Advances in integrated circuit technology continue to provide more and more transistors on a chip. Computer architects are faced with the challenge of finding the best way to translate these resources into high performance. The challenge in the design of next generation CPU (central processing unit) lies not on trying to use up the silicon area, but on finding smart ways to make use of the wealth of transistors now available. In addition, the next generation architecture should offer high throughout performance, scalability, modularity, and low energy consumption, instead of an architecture that is suitable for only one class of applications or users, or only emphasize faster clock rate. A program exhibits different types of parallelism: instruction level parallelism (ILP), thread level parallelism (TLP), or data level parallelism (DLP). Likewise, architectures can be designed to exploit one or more of these types of parallelism. It is generally not possible to design architectures that can take advantage of all three types of parallelism without using very complex hardware structures and complex compiler optimizations. We present the state-of-art architecture SDF (scheduled data flowed) which explores the TLP parallelism as much as that is supplied by that application. We implement a SDF single-chip multiprocessor constructed from simpler processors and execute the automatically parallelizing application on the single-chip multiprocessor. SDF has many desirable features such as high throughput, scalability, and low power consumption, which meet the requirements of the next generation of CPU design. Compared with superscalar, VLIW (very long instruction word), and SMT (simultaneous multithreading), the experiment results show that for application with very little parallelism SDF is comparable to other architectures, for applications with large amounts of parallelism SDF outperforms other architectures.
Date: December 2004
Creator: Zhang, Yuhua
Partner: UNT Libraries

Execution Time Analysis through Software Monitors

Description: The analysis of an executing program and the isolation of critical code has been a problem since the first program was written. This thesis examines the process of program analysis through the use of a software monitoring system. Since there is a trend toward structured languages a subset of PL/I was developed t~o exhibit source statement monitoring and costing techniques. By filtering a PL/W program through a preorocessor which determines the cost of source statements and inserts monitoring code, a post-execution analysis of the program can be obtained. This analysis displays an estimated time cost for each source statements the number of times the statement w3s executed, and the product of these values. Additionally, a bar graph is printed in order to quickly locate very active code.
Date: December 1977
Creator: Whistler, Wayne C.
Partner: UNT Libraries

Exon/Intron Discrimination Using the Finite Induction Pattern Matching Technique

Description: DNA sequence analysis involves precise discrimination of two of the sequence's most important components: exons and introns. Exons encode the proteins that are responsible for almost all the functions in a living organism. Introns interrupt the sequence coding for a protein and must be removed from primary RNA transcripts before translation to protein can occur. A pattern recognition technique called Finite Induction (FI) is utilized to study the language of exons and introns. FI is especially suited for analyzing and classifying large amounts of data representing sequences of interest. It requires no biological information and employs no statistical functions. Finite Induction is applied to the exon and intron components of DNA by building a collection of rules based upon what it finds in the sequences it examines. It then attempts to match the known rule patterns with new rules formed as a result of analyzing a new sequence. A high number of matches predict a probable close relationship between the two sequences; a low number of matches signifies a large amount of difference between the two. This research demonstrates FI to be a viable tool for measurement when known patterns are available for the formation of rule sets.
Date: December 1997
Creator: Taylor, Pamela A., 1941-
Partner: UNT Libraries

Exploring Simscape™ Modeling for Piezoelectric Sensor Based Energy Harvester

Description: This work presents an investigation of a piezoelectric sensor based energy harvesting system, which collects energy from the surrounding environment. Increasing costs and scarcity of fossil fuels is a great concern today for supplying power to electronic devices. Furthermore, generating electricity by ordinary methods is a complicated process. Disposal of chemical batteries and cables is polluting the nature every day. Due to these reasons, research on energy harvesting from renewable resources has become mandatory in order to achieve improved methods and strategies of generating and storing electricity. Many low power devices being used in everyday life can be powered by harvesting energy from natural energy resources. Power overhead and power energy efficiency is of prime concern in electronic circuits. In this work, an energy harvester is modeled and simulated in Simscape™ for the functional analysis and comparison of achieved outcomes with previous work. Results demonstrate that the harvester produces power in the 0 μW to 100 μW range, which is an adequate amount to provide supply to low power devices. Power efficiency calculations also demonstrate that the implemented harvester is capable of generating and storing power for low power pervasive applications.
Date: May 2017
Creator: Dhayal, Vandana Sultan Singh
Partner: UNT Libraries

Exploring Trusted Platform Module Capabilities: A Theoretical and Experimental Study

Description: Trusted platform modules (TPMs) are hardware modules that are bound to a computer's motherboard, that are being included in many desktops and laptops. Augmenting computers with these hardware modules adds powerful functionality in distributed settings, allowing us to reason about the security of these systems in new ways. In this dissertation, I study the functionality of TPMs from a theoretical as well as an experimental perspective. On the theoretical front, I leverage various features of TPMs to construct applications like random oracles that are impossible to implement in a standard model of computation. Apart from random oracles, I construct a new cryptographic primitive which is basically a non-interactive form of the standard cryptographic primitive of oblivious transfer. I apply this new primitive to secure mobile agent computations, where interaction between various entities is typically required to ensure security. I prove these constructions are secure using standard cryptographic techniques and assumptions. To test the practicability of these constructions and their applications, I performed an experimental study, both on an actual TPM and a software TPM simulator which has been enhanced to make it reflect timings from a real TPM. This allowed me to benchmark the performance of the applications and test the feasibility of the proposed extensions to standard TPMs. My tests also show that these constructions are practical.
Date: May 2008
Creator: Gunupudi, Vandana
Partner: UNT Libraries

Extensions to Jinni Mobile Agent Architecture

Description: We extend the Jinni mobile agent architecture with a multicast network transport layer, an agent-to-agent delegation mechanism and a reflection based Prolog-to-Java interface. To ensure that our agent infrastructure runs efficiently, independently of router-level multicast support, we describe a blackboard based algorithm for locating a randomly roaming agent. As part of the agent-to-agent delegation mechanism, we describe an alternative to code-fetching mechanism for stronger mobility of mobile agents with less network overhead. In the context of direct and reflection based extension mechanisms for Jinni, we describe the design and the implementation of a reflection based Prolog-to-Java interface. The presence of subtyping and method overloading makes finding the most specific method corresponding to a Prolog call pattern fairly difficult. We describe a run-time algorithm which provides accurate handling of overloaded methods beyond Java's reflection package's limitations.
Date: May 2001
Creator: Tyagi, Satyam
Partner: UNT Libraries

Extracting Useful Information from Social Media during Disaster Events

Description: In recent years, social media platforms such as Twitter and Facebook have emerged as effective tools for broadcasting messages worldwide during disaster events. With millions of messages posted through these services during such events, it has become imperative to identify valuable information that can help the emergency responders to develop effective relief efforts and aid victims. Many studies implied that the role of social media during disasters is invaluable and can be incorporated into emergency decision-making process. However, due to the "big data" nature of social media, it is very labor-intensive to employ human resources to sift through social media posts and categorize/classify them as useful information. Hence, there is a growing need for machine intelligence to automate the process of extracting useful information from the social media data during disaster events. This dissertation addresses the following questions: In a social media stream of messages, what is the useful information to be extracted that can help emergency response organizations to become more situationally aware during and following a disaster? What are the features (or patterns) that can contribute to automatically identifying messages that are useful during disasters? We explored a wide variety of features in conjunction with supervised learning algorithms to automatically identify messages that are useful during disaster events. The feature design includes sentiment features to extract the geo-mapped sentiment expressed in tweets, as well as tweet-content and user detail features to predict the likelihood of the information contained in a tweet to be quickly spread in the network. Further experimentation is carried out to see how these features help in identifying the informative tweets and filter out those tweets that are conversational in nature.
Date: May 2017
Creator: Neppalli, Venkata Kishore
Partner: UNT Libraries

Flexible Digital Authentication Techniques

Description: Abstract This dissertation investigates authentication techniques in some emerging areas. Specifically, authentication schemes have been proposed that are well-suited for embedded systems, and privacy-respecting pay Web sites. With embedded systems, a person could own several devices which are capable of communication and interaction, but these devices use embedded processors whose computational capabilities are limited as compared to desktop computers. Examples of this scenario include entertainment devices or appliances owned by a consumer, multiple control and sensor systems in an automobile or airplane, and environmental controls in a building. An efficient public key cryptosystem has been devised, which provides a complete solution to an embedded system, including protocols for authentication, authenticated key exchange, encryption, and revocation. The new construction is especially suitable for the devices with constrained computing capabilities and resources. Compared with other available authentication schemes, such as X.509, identity-based encryption, etc, the new construction provides unique features such as simplicity, efficiency, forward secrecy, and an efficient re-keying mechanism. In the application scenario for a pay Web site, users may be sensitive about their privacy, and do not wish their behaviors to be tracked by Web sites. Thus, an anonymous authentication scheme is desirable in this case. That is, a user can prove his/her authenticity without revealing his/her identity. On the other hand, the Web site owner would like to prevent a bunch of users from sharing a single subscription while hiding behind user anonymity. The Web site should be able to detect these possible malicious behaviors, and exclude corrupted users from future service. This dissertation extensively discusses anonymous authentication techniques, such as group signature, direct anonymous attestation, and traceable signature. Three anonymous authentication schemes have been proposed, which include a group signature scheme with signature claiming and variable linkability, a scheme for direct anonymous attestation in trusted computing platforms ...
Date: May 2006
Creator: Ge, He
Partner: UNT Libraries

Force-Directed Graph Drawing and Aesthetics Measurement in a Non-Strict Pure Functional Programming Language

Description: Non-strict pure functional programming often requires redesigning algorithms and data structures to work more effectively under new constraints of non-strict evaluation and immutable state. Graph drawing algorithms, while numerous and broadly studied, have no presence in the non-strict pure functional programming model. Additionally, there is currently no freely licensed standalone toolkit used to quantitatively analyze aesthetics of graph drawings. This thesis addresses two previously unexplored questions. Can a force-directed graph drawing algorithm be implemented in a non-strict functional language, such as Haskell, and still be practically usable? Can an easily extensible aesthetic measuring tool be implemented in a language such as Haskell and still be practically usable? The focus of the thesis is on implementing one of the simplest force-directed algorithms, that of Fruchterman and Reingold, and comparing its resulting aesthetics to those of a well-known C++ implementation of the same algorithm.
Date: December 2009
Creator: Gaconnet, Christopher James
Partner: UNT Libraries

FORTRAN Optimizations at the Source Code Level

Description: This paper discusses FORTRAN optimizations that the user can perform manually at the source code level to improve object code performance. It makes use of descriptive examples within the text of the paper for explanatory purposes. The paper defines key areas in writing a FORTRAN program and recommends ways to improve efficiency in these areas.
Date: August 1977
Creator: Barber, Willie D.
Partner: UNT Libraries

FP-tree Based Spatial Co-location Pattern Mining

Description: A co-location pattern is a set of spatial features frequently located together in space. A frequent pattern is a set of items that frequently appears in a transaction database. Since its introduction, the paradigm of frequent pattern mining has undergone a shift from candidate generation-and-test based approaches to projection based approaches. Co-location patterns resemble frequent patterns in many aspects. However, the lack of transaction concept, which is crucial in frequent pattern mining, makes the similar shift of paradigm in co-location pattern mining very difficult. This thesis investigates a projection based co-location pattern mining paradigm. In particular, a FP-tree based co-location mining framework and an algorithm called FP-CM, for FP-tree based co-location miner, are proposed. It is proved that FP-CM is complete, correct, and only requires a small constant number of database scans. The experimental results show that FP-CM outperforms candidate generation-and-test based co-location miner by an order of magnitude.
Date: May 2005
Creator: Yu, Ping
Partner: UNT Libraries

A Framework for Analyzing and Optimizing Regional Bio-Emergency Response Plans

Description: The presence of naturally occurring and man-made public health threats necessitate the design and implementation of mitigation strategies, such that adequate response is provided in a timely manner. Since multiple variables, such as geographic properties, resource constraints, and government mandated time-frames must be accounted for, computational methods provide the necessary tools to develop contingency response plans while respecting underlying data and assumptions. A typical response scenario involves the placement of points of dispensing (PODs) in the affected geographic region to supply vaccines or medications to the general public. Computational tools aid in the analysis of such response plans, as well as in the strategic placement of PODs, such that feasible response scenarios can be developed. Due to the sensitivity of bio-emergency response plans, geographic information, such as POD locations, must be kept confidential. The generation of synthetic geographic regions allows for the development of emergency response plans on non-sensitive data, as well as for the study of the effects of single geographic parameters. Further, synthetic representations of geographic regions allow for results to be published and evaluated by the scientific community. This dissertation presents methodology for the analysis of bio-emergency response plans, methods for plan optimization, as well as methodology for the generation of synthetic geographic regions.
Date: December 2010
Creator: Schneider, Tamara
Partner: UNT Libraries

Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator

Description: Software applications’ performance is hindered by a variety of factors, but most notably by the well-known CPU-memory speed gap (often known as the memory wall). This results in the CPU sitting idle waiting for data to be brought from memory to processor caches. The addressing used by caches cause non-uniform accesses to various cache sets. The non-uniformity is due to several reasons, including how different objects are accessed by the code and how the data objects are located in memory. Memory allocators determine where dynamically created objects are placed, thus defining addresses and their mapping to cache locations. It is important to evaluate how different allocators behave with respect to the localities of the created objects. Most allocators use a single attribute, the size, of an object in making allocation decisions. Additional attributes such as the placement with respect to other objects, or specific cache area may lead to better use of cache memories. In this dissertation, we proposed and implemented a framework that allows for the development and evaluation of new memory allocation techniques. At the root of the framework is a memory tracing tool called Gleipnir, which provides very detailed information about every memory access, and relates it back to source level objects. Using the traces from Gleipnir, we extended a commonly used cache simulator for generating detailed cache statistics: per function, per data object, per cache line, and identify specific data objects that are conflicting with each other. The utility of the framework is demonstrated with a new memory allocator known as equivalence class allocator. The new allocator allows users to specify cache sets, in addition to object size, where the objects should be placed. We compare this new allocator with two well-known allocators, viz., Doug Lea and Pool allocators.
Date: August 2013
Creator: Janjusic, Tomislav
Partner: UNT Libraries

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Description: Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature characterizations, and 3) the use of overlapping bigrams as the textual working unit to assist in context analysis and reconstruction.
Date: August 2015
Creator: Bristow, Kelly H.
Partner: UNT Libraries

General Purpose Computing in Gpu - a Watermarking Case Study

Description: The purpose of this project is to explore the GPU for general purpose computing. The GPU is a massively parallel computing device that has a high-throughput, exhibits high arithmetic intensity, has a large market presence, and with the increasing computation power being added to it each year through innovations, the GPU is a perfect candidate to complement the CPU in performing computations. The GPU follows the single instruction multiple data (SIMD) model for applying operations on its data. This model allows the GPU to be very useful for assisting the CPU in performing computations on data that is highly parallel in nature. The compute unified device architecture (CUDA) is a parallel computing and programming platform for NVIDIA GPUs. The main focus of this project is to show the power, speed, and performance of a CUDA-enabled GPU for digital video watermark insertion in the H.264 video compression domain. Digital video watermarking in general is a highly computationally intensive process that is strongly dependent on the video compression format in place. The H.264/MPEG-4 AVC video compression format has high compression efficiency at the expense of having high computational complexity and leaving little room for an imperceptible watermark to be inserted. Employing a human visual model to limit distortion and degradation of visual quality introduced by the watermark is a good choice for designing a video watermarking algorithm though this does introduce more computational complexity to the algorithm. Research is being conducted into how the CPU-GPU execution of the digital watermark application can boost the speed of the applications several times compared to running the application on a standalone CPU using NVIDIA visual profiler to optimize the application.
Date: August 2014
Creator: Hanson, Anthony
Partner: UNT Libraries

General Purpose Programming on Modern Graphics Hardware

Description: I start with a brief introduction to the graphics processing unit (GPU) as well as general-purpose computation on modern graphics hardware (GPGPU). Next, I explore the motivations for GPGPU programming, and the capabilities of modern GPUs (including advantages and disadvantages). Also, I give the background required for further exploring GPU programming, including the terminology used and the resources available. Finally, I include a comprehensive survey of previous and current GPGPU work, and end with a look at the future of GPU programming.
Date: May 2008
Creator: Fleming, Robert
Partner: UNT Libraries

A general purpose semantic parser using FrameNet and WordNet®.

Description: Syntactic parsing is one of the best understood language processing applications. Since language and grammar have been formally defined, it is easy for computers to parse the syntactic structure of natural language text. Does meaning have structure as well? If it has, how can we analyze the structure? Previous systems rely on a one-to-one correspondence between syntactic rules and semantic rules. But such systems can only be applied to limited fragments of English. In this thesis, we propose a general-purpose shallow semantic parser which utilizes a semantic network (WordNet), and a frame dataset (FrameNet). Semantic relations recognized by the parser are based on how human beings represent knowledge of the world. Parsing semantic structure allows semantic units and constituents to be accessed and processed in a more meaningful way than syntactic parsing, moving the automation of understanding natural language text to a higher level.
Date: May 2004
Creator: Shi, Lei
Partner: UNT Libraries

Generating Machine Code for High-Level Programming Languages

Description: The purpose of this research was to investigate the generation of machine code from high-level programming language. The following steps were undertaken: 1) Choose a high-level programming language as the source language and a computer as the target computer. 2) Examine all stages during the compiling of a high-level programming language and all data sets involved in the compilation. 3) Discover the mechanism for generating machine code and the mechanism to generate more efficient machine code from the language. 3) Construct an algorithm for generating machine code for the target computer. The results suggest that compiler is best implemented in a high-level programming language, and that SCANNER and PARSER should be independent of target representations, if possible.
Date: December 1976
Creator: Chao, Chia-Huei
Partner: UNT Libraries

A Global Stochastic Modeling Framework to Simulate and Visualize Epidemics

Description: Epidemics have caused major human and monetary losses through the course of human civilization. It is very important that epidemiologists and public health personnel are prepared to handle an impending infectious disease outbreak. the ever-changing demographics, evolving infrastructural resources of geographic regions, emerging and re-emerging diseases, compel the use of simulation to predict disease dynamics. By the means of simulation, public health personnel and epidemiologists can predict the disease dynamics, population groups at risk and their geographic locations beforehand, so that they are prepared to respond in case of an epidemic outbreak. As a consequence of the large numbers of individuals and inter-personal interactions involved in simulating infectious disease spread in a region such as a county, sizeable amounts of data may be produced that have to be analyzed. Methods to visualize this data would be effective in facilitating people from diverse disciplines understand and analyze the simulation. This thesis proposes a framework to simulate and visualize the spread of an infectious disease in a population of a region such as a county. As real-world populations have a non-homogeneous demographic and spatial distribution, this framework models the spread of an infectious disease based on population of and geographic distance between census blocks; social behavioral parameters for demographic groups. the population is stratified into demographic groups in individual census blocks using census data. Infection spread is modeled by means of local and global contacts generated between groups of population in census blocks. the strength and likelihood of the contacts are based on population, geographic distance and social behavioral parameters of the groups involved. the disease dynamics are represented on a geographic map of the region using a heat map representation, where the intensity of infection is mapped to a color scale. This framework provides a tool for public health personnel and ...
Date: May 2012
Creator: Indrakanti, Saratchandra
Partner: UNT Libraries

GPS CaPPture: a System for GPS Trajectory Collection, Processing, and Destination Prediction

Description: In the United States, smartphone ownership surpassed 69.5 million in February 2011 with a large portion of those users (20%) downloading applications (apps) that enhance the usability of a device by adding additional functionality. a large percentage of apps are written specifically to utilize the geographical position of a mobile device. One of the prime factors in developing location prediction models is the use of historical data to train such a model. with larger sets of training data, prediction algorithms become more accurate; however, the use of historical data can quickly become a downfall if the GPS stream is not collected or processed correctly. Inaccurate or incomplete or even improperly interpreted historical data can lead to the inability to develop accurately performing prediction algorithms. As GPS chipsets become the standard in the ever increasing number of mobile devices, the opportunity for the collection of GPS data increases remarkably. the goal of this study is to build a comprehensive system that addresses the following challenges: (1) collection of GPS data streams in a manner such that the data is highly usable and has a reduction in errors; (2) processing and reduction of the collected data in order to prepare it and make it highly usable for the creation of prediction algorithms; (3) creation of prediction/labeling algorithms at such a level that they are viable for commercial use. This study identifies the key research problems toward building the CaPPture (collection, processing, prediction) system.
Date: May 2012
Creator: Griffin, Terry W.
Partner: UNT Libraries

Graph-based Centrality Algorithms for Unsupervised Word Sense Disambiguation

Description: This thesis introduces an innovative methodology of combining some traditional dictionary based approaches to word sense disambiguation (semantic similarity measures and overlap of word glosses, both based on WordNet) with some graph-based centrality methods, namely the degree of the vertices, Pagerank, closeness, and betweenness. The approach is completely unsupervised, and is based on creating graphs for the words to be disambiguated. We experiment with several possible combinations of the semantic similarity measures as the first stage in our experiments. The next stage attempts to score individual vertices in the graphs previously created based on several graph connectivity measures. During the final stage, several voting schemes are applied on the results obtained from the different centrality algorithms. The most important contributions of this work are not only that it is a novel approach and it works well, but also that it has great potential in overcoming the new-knowledge-acquisition bottleneck which has apparently brought research in supervised WSD as an explicit application to a plateau. The type of research reported in this thesis, which does not require manually annotated data, holds promise of a lot of new and interesting things, and our work is one of the first steps, despite being a small one, in this direction. The complete system is built and tested on standard benchmarks, and is comparable with work done on graph-based word sense disambiguation as well as lexical chains. The evaluation indicates that the right combination of the above mentioned metrics can be used to develop an unsupervised disambiguation engine as powerful as the state-of-the-art in WSD.
Date: December 2008
Creator: Sinha, Ravi Som
Partner: UNT Libraries

Graph-Based Keyphrase Extraction Using Wikipedia

Description: Keyphrases describe a document in a coherent and simple way, giving the prospective reader a way to quickly determine whether the document satisfies their information needs. The pervasion of huge amount of information on Web, with only a small amount of documents have keyphrases extracted, there is a definite need to discover automatic keyphrase extraction systems. Typically, a document written by human develops around one or more general concepts or sub-concepts. These concepts or sub-concepts should be structured and semantically related with each other, so that they can form the meaningful representation of a document. Considering the fact, the phrases or concepts in a document are related to each other, a new approach for keyphrase extraction is introduced that exploits the semantic relations in the document. For measuring the semantic relations between concepts or sub-concepts in the document, I present a comprehensive study aimed at using collaboratively constructed semantic resources like Wikipedia and its link structure. In particular, I introduce a graph-based keyphrase extraction system that exploits the semantic relations in the document and features such as term frequency. I evaluated the proposed system using novel measures and the results obtained compare favorably with previously published results on established benchmarks.
Date: December 2010
Creator: Dandala, Bharath
Partner: UNT Libraries

Grid-based Coordinated Routing in Wireless Sensor Networks

Description: Wireless sensor networks are battery-powered ad-hoc networks in which sensor nodes that are scattered over a region connect to each other and form multi-hop networks. These nodes are equipped with sensors such as temperature sensors, pressure sensors, and light sensors and can be queried to get the corresponding values for analysis. However, since they are battery operated, care has to be taken so that these nodes use energy efficiently. One of the areas in sensor networks where an energy analysis can be done is routing. This work explores grid-based coordinated routing in wireless sensor networks and compares the energy available in the network over time for different grid sizes.
Date: December 2006
Creator: Sawant, Uttara
Partner: UNT Libraries