UNT Theses and Dissertations - 75 Matching Results

Search Results

Kinetic and Chemical Mechanism of Pyrophosphate-Dependent Phosphofructokinase

Description: Data obtained from isotope exchange at equilibrium, exchange of inorganic phosphate against forward reaction flux, and positional isotope exchange of 18O from the (βγ-bridge position of pyrophosphate to a (β-nonbridge position all indicate that the pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii has a rapid equilibrium random kinetic mechanism. All exchange reactions are strongly inhibited at high concentrations of the fructose 6-phosphate/Pi and MgPPi/Pi substrate-product pairs and weakly inhibited at high concentrations of the MgPPi/fructose 1,6-bisphosphate pair suggesting three dead-end complexes, E:F6P:Pi, E:MgPPi:Pi, and E:FBP:MgPPi. Neither back-exchange by [32p] nor positional isotope exchange of 18O-bridge-labeled pyrophosphate was observed under any conditions, suggesting that either the chemical interconversion step or a step prior to it limits the overall rate of the reaction. Reduction of the pyridoxal 5'-phosphate-inactivated enzyme with NaB[3H]4 indicates that about 7 lysines are modified in free enzyme and fructose 1,6-bisphosphate protects 2 of these from modification. The pH dependence of the enzyme-reactant dissociation constants suggests that the phosphates of fructose 6-phosphate, fructose 1,6-bisphosphate, inorganic phosphate, and Mg-pyrophosphate must be completely ionized and that lysines are present in the vicinity of the 1- and 6-phosphates of the sugar phosphate and bisphosphates probably directly coordinated to these phosphates. The pH dependence of kinetic parameters suggests that the enzyme catalyzes its reaction via general acid-base catalysis with the use of a proton shuttle. The base is required unprotonated in both reaction directions. In the direction of fructose 6-phosphate phosphorylation the base accepts a proton from the hydroxyl at C-l of F6P and then donates it to protonate the leaving phosphate. The maximum velocity of the reaction is pH independent in both reaction directions while V/K profiles exhibit pKs for binding groups (including enzyme and reactant functional groups) as well as pKs for enzyme catalytic groups. These data suggest that reactants bind only when ...
Date: December 1988
Creator: Cho, Yong Kweon
Partner: UNT Libraries

Studies of the Mechanism of the Catalytic Subunit of cAMP Dependent Protein Kinase

Description: The kinetic mechanism of the cAMP-dependent protein kinase has been determined to be random in the direction of MgADP phosphorylation by using initial velocity studies in the absence and presence of the product, phospho-Serpeptide (Leu-Arg-Arg-Ala-Ser[P]-Leu-Gly) , and dead-end inhibitors. In contrast to the kinetic parameters obtained in the direction of Serpeptide phosphorylation, the only kinetic parameters affected by Mg^2+ are the dissociation constants for E:phospho-Serpeptide and E:MgADP, which are decreased by about 4-fold. The dead-end analog MgAMPCP binds with an affinity equal to that of MgADP in contrast to MgAMPPCP, which binds weaker than MgATP. The ratio of the maximum velocities in the forward and reverse reactions is about 200, and the Haldane relationship gives a K-eq of (7.2 ± 2) x 10^2. The latter can be compared to the K-eq obtained by direct measurement of reactant concentrations (2.2 ± 0.4) x 10^3 and 31-P NMR (1 ± 0.5) x 10^3. Data for the pH dependence of kinetic parameters and inhibitor dissociation constants for the cAMP dependent protein kinase are consistent with a mechanism in which reactants selectively bind to an enzyme with the catalytic base unprotonated and an enzyme group required protonated for Ser-peptide binding. Preferentially MgATP binds fully ionized and requires an enzyme residue (probably lysine) to be protonated. The maximum velocity and V/K-MgATP are pH independent. The V/K for Serpeptide is bell-shaped with estimated pK values of 6.2 and 8.5. The dependence of 1/K-i for Leu-Arg-Arg-Ala-Ala-Leu-Gly is also bell-shaped, giving pK values identical with those obtained for V/K-Serpeptide, while the K-i for MgAMPPCP increases from a constant value of 650 μM above pH 8 to a constant value of 4 mM below pH 5.5. The K-i for uncomplexed Mg^2+ obtained from the Mg^2+ dependence of V and V/K-MgATP is apparently pH independent.
Date: August 1989
Creator: Yoon, Moon-Young
Partner: UNT Libraries

Studies of the Mechanism of Plasma Cholesterol Esterification in Aged Rats

Description: The study was performed to determine factors influencing the esteriflcation of plasma cholesterol in young and aged rats. The distribution of LCAT activity was determined following gel nitration chromatography and ultracentrifugation of whole plasma respectively. When rat plasma was fractionated on a Bio-Gel A-5 Mcolumn, LCAT activity was found to be associated with the HDL fraction. A similar result was observed upon 24 hr density gradient ultracentrifugation of the plasma. However, following prolonged 40 hr preparative ultracentrifugation, the majority of the LCAT activity was displaced into the lipoprotein-free infranatant fraction (d> 1.225 g/ml). The dissociation of LCAT from the HDL fraction occured to a smaller extent in aged rat plasma than in young rat plasma. Plasma incubation (37°C) experiments followed by the isolation of lipoproteins and the subsequent analysis of their cholesterol content revealed that in vitro net esteriflcation of free cholesterol (FC) by LCAT as well as the fractional ufilization of HDL-FC as substrate were lower in the plasma of the aged animal as compared to that of the young animal despite the fact that the total pool of FC was higher in the former. The net transfer of FC from lower density lipoproteins (d<1.07 g/ml) to HDL provided the FC (in addition to HDL-FC) for esteriflcation in the plasma of both young and aged rats, and this process was not substantially affected by aging. Substrate specificity studies indicated that HDL from young rats was a better substrate for LCAT than the HDL from aged rats. The HDL isolated from the plasma of aged rats was enriched with apo E and had a considerably higher molecular weight than the HDL from young rat plasma. The ratio of phosphatidyl choline/sphingomyelin was lower in the HDL of aged rats. These data suggest that the decreased plasma cholesterol esteriflcation in aged rats ...
Date: December 1989
Creator: Lee, Sun Min
Partner: UNT Libraries

Analysis of a Human Transfer RNA Gene Cluster and Characterization of the Transcription Unit and Two Processed Pseudogenes of Chimpanzee Triosephosphate Isomerase

Description: An 18.5-kb human DNA segment was selected from a human XCharon-4A library by hybridization to mammalian valine tRNAiAc and found to encompass a cluster of three tRNA genes. Two valine tRNA genes with anticodons of AAC and CAC, encoding the major and minor cytoplasmic valine tRNA isoacceptors, respectively, and a lysine tRNAcuu gene were identified by Southern blot hybridization and DNA sequence analysis of a 7.1-kb region of the human DNA insert. At least nine Alu family members were found interspersed throughout the human DNA fragment. The tRNA genes are accurately transcribed by RNA polymerase III in a HeLa cell extract, since the RNase Ti fingerprints of the mature-sized tRNA transcription products are consistent with the DNA sequences of the structural genes. Three members of the chimpanzee triosephosphate isomerase (TPI) gene family, the functional transcription unit and two processed pseudogenes, were characterized by genomic blotting and DNA sequence analysis. The bona fide TPI gene spans 3.5 kb with seven exons and six introns, and is the first complete hominoid TPI gene sequenced. The gene exhibits a very high identity with the human and rhesus TPI genes. In particular, the polypeptides of 248 amino acids encoded by the chimpanzee and human TPI genes are identical, although the two coding regions differ in the third codon wobble positions for five amino acids. An Alu member occurs upstream from one of the processed pseudogenes, whereas an isolated endogenous retroviral long terminal repeat (HERV-K) occurs within the structural region of the other processed pseudogene. The ages of the processed pseudogenes were estimated to be 2.6 and 10.4 million years, implying that one was inserted into the genome before the divergence of the chimpanzee and human lineages, and the other inserted into the chimpanzee genome after the divergence.
Date: August 1990
Creator: Craig, Leonard C. (Leonard Callaway)
Partner: UNT Libraries

Identification of Endogenous Substrates for ADP-Ribosylation in Rat Liver

Description: Bacterial toxins have been shown to modify animal cell proteins in vivo with ADPR. Animal cells also contain endogenous enzymes that can modify proteins. Indirect evidence for the existence in vivo of rat liver proteins modified by ADPR on arginine residues has been reported previously. Presented here is direct evidence for the existence of ADP-ribosylarginine in rat liver proteins. Proteins were subjected to exhaustive protease digestion and ADP-ribosyl amino acids were isolated by boronate chromatography.
Date: May 1992
Creator: Loflin, Paul T. (Paul Tracey)
Partner: UNT Libraries

Application of Synthetic Peptides as Substrates for Reversible Phosphorylation

Description: Two highly homologous synthetic peptides MLC(3-13) (K-R-A-K-A-K-T-TK-K-R-G) and MLC(5-13) (A-K-A-K-T-T-K-K-R-G) corresponding to the amino terminal amino acid sequence of smooth muscle myosin light chain were utilized as substrates for protein kinase C purified from murine lymphosarcoma tumors to determine the role of the primary amino acid sequence of protein kinase C substrates in defining the lipid (phosphatidyl serine and diacylglycerol) requirements for the activation of the enzyme. Removal of the basic residues lysine and arginine from the amino terminus of MLC(3-13) did not have a significant effect on the Ka value of diacylglycerol. The binding of effector to calcium-protein kinase C appears to be random since binding of one effector did not block the binding of the other.
Date: August 1992
Creator: Abukhalaf, Imad Kazem
Partner: UNT Libraries

Dependence of the Kinetic Mechanism of Adenosine 3',5'-Monophosphate Dependent Protein Kinase Catalytic Subunit in the Direction of Magnesium Adenosine 5'-Diphosphate Phosphorylation on pH and the Concentration of Free Magnesium Ions

Description: To define the overall kinetic and chemical mechanism of adenosine 3',5'-monophosphate dependent protein kinase catalytic subunit, the mechanism in the direction of MgADP phosphorylation was determined, using studies of initial velocity in the absence and presence of dead-end inhibitors. The kinetic mechanism was determined as a function of uncomplexed Mg^2+ (Mg_f) at pH 7.2 and as a function of pH at low (0.5 mM) Mg_f. At pH 7.2 data are consistent with a random kinetic mechanism in the direction of MgADP phosphorylation with both pathways allowed: the pathway in which MgADP binds to enzyme prior to phosphorylated peptide (PSP) and that in which PSP binds before MgADP. One or the other pathway predominates, depending on Mg_f concentration. At 0.5 mM Mg_f, the mechanism is steady-state ordered with the pathway where PSP binds first preferred; at 10 mM Mg_f, the mechanism is equilibrium ordered, and the pathway in which MgADP binds first preferred. This change in mechanism to equilibrium ordered is due to an increase in affinity of enzyme for MgADP and a decrease in affinity for PSP. There is also a pH-dependent change in mechanism at 0.5 mM Mg_f. At pH 6 the mechanism is equilibrium ordered with the pathway where PSP binds first preferred. At pH 7.6 the mechanism is ordered with MgADP binding first. The log V/E_t vs. pH profile is pH-independent, suggesting only the correctly protonated form of each substrate binds to enzyme. The log V/K_MgADP vs. PH profile gives a pK of 7, likely that of a general acid, which must be protonated for activity. The pK_iPSP vs. pH profile gives a pK of 6.5, likely reflecting the peptide phosphoryl group, which must be unprotonated for activity.
Date: December 1992
Creator: Qamar, Raheel
Partner: UNT Libraries

Fumarate Activation and Kinetic Solvent Isotope Effects as Probes of the NAD-Malic Enzyme Reaction

Description: The kinetic mechanism of activation of the NAD-malic enzyme by fumarate and the transition state structure for the oxidation malate for the NAD-malic enzyme reaction have been studied. Fumarate exerts its activating effect by decreasing the off-rate for malate from the E:Mg:malate and E:Mg:NAD:malate complexes. The activation by fumarate results in a decrease in K_imalate and an increase in V/K_malate by about 2-fold, while the maximum velocity remains constant. A discrimination exists between active and activator sites for the binding of dicarboxylic acids. Activation by fumarate is proposed to have physiologic importance in the parasite. The hydride transfer transition state for the NAD-malic enzyme reaction is concerted with respect to solvent isotope sensitive and hydride transfer steps. Two protons are involved in the solvent isotope sensitive step, one with a normal fractionation factor, another with an inverse fractionation factor. A structure for the transition state for hydride transfer in the NAD-malic enzyme reaction is proposed.
Date: December 1992
Creator: Lai, Chung-Jeng
Partner: UNT Libraries

Kinetic and Chemical Mechanism of 6-phosphogluconate Dehydrogenase from Candida Utilis

Description: A complete initial velocity study of the 6-phosphogluconate dehydrogenase from Candida utilis in both reaction directions suggests a rapid equilibrium random kinetic mechanism with dead-end E:NADP:(ribulose 5-phosphate) and E:NADPH:(6- phosphogluconate) complexes. Initial velocity studies obtained as a function of pH and using NAD as the dinucleotide substrate for the reaction suggest that the 2'-phosphate is critical for productive binding of the dinucleotide substrate. Primary deuterium isotope effects using 3-<i-6-phosphogluconate were obtained for the 6-phosphogluconate dehydrogenase reaction using NADP and various alternative inucleotide substrates.
Date: May 1993
Creator: Berdis, Anthony J. (Anthony Joseph)
Partner: UNT Libraries

O-Acetylserine Sulhydralase-A from Salmonella typhimurium LT-2: Thermodynamic Properties and SPectral Identification of Intermediates

Description: O-Acetylserine Sulfhydrylase (OASS) is a pyridoxal phosphate enzyme that catalyzes the reaction of O-acetyl-Lserine with sulfide to give L-cysteine. OASS is present as two isoforms, designated -A and -B. The kinetic mechanism of OASS-A is well known and there is also much known concerning the acid-base chemistry of the enzyme. However, little is known concerning the location of the rate determining steps, the sequencing of chemical steps that occur at the active site, or the nature of the rate determining transition states. The studies performed to help elucidate these aspects of the OASS-A mechanism included determination of the thermodynamics of both half reactions, along with studies utilizing substrate analogs of OAS halting the reaction at specific points along the reaction pathway allowing the identification of reaction intermediates. The free energy change of the first half reaction was shown to be -5.7 Kcal/mole while the second half reaction was shown to be, for all intents and purposes, irreversible. Intermediates along the reaction pathway that have been previously identified include the internal Schiff base and the a-aminoacrylate. The external Schiff base was identified using the analogs cysteine, alanine, and glycine while the geminal diamine was identified using the analog serine. Formation of the external aldimine was shown to be pH dependent with a pK of 8.1 ± 0.3 most likely representing a general base that accepts a proton from the a-amine of cysteine to facilitate a nucleophilic attack on C4r of the PLP imine. Formation of the geminal diamine was also shown to be pH dependent with two pK values having an average value of 8.1. One of the groups most likely represents the general base which accepts a proton from the a-amine of cysteine while the second group likely interacts with the amino acid side chain to orientate the amino acid ...
Date: August 1993
Creator: Simmons, James Walter
Partner: UNT Libraries

Kinetic and Chemical Mechanism of O-Acetylserine Sulfhydrylase-B from Salmonella Typhimurium

Description: Initial velocity studies of O-acetylserine sulfhydrylase-B (OASS-B) from Salmonella typhimurium using both natural and alternative substrates suggest a Bi Bi ping pong kinetic mechanism with double substrate competitive inhibition. The ping pong mechanism is corroborated by a qualitative and quantitative analysis of product and dead-end inhibition. Product inhibition by acetate is S-parabolic noncompetitive, indication of a combination of acetate with E followed by OAS. These data suggest some randomness to the OASS-B kinetic mechanism. The pH dependence of kinetic parameters was determined in order to obtain information on the acid-base chemical mechanism for the OASS-B reaction. A mechanism is proposed in which an enzyme general base accepts a proton from α-amine of O-acetylserine, while a second enzyme general base acts by polarizing the acetyl carbonyl assisting in the β-elimination of the acetyl group of O-acetylserine. The ε-amine of the active site lysine acts as a general base to abstract the α-proton in the β-elimination of acetate. At the end of the first half reaction the ε-amine of the active site lysine that formed the internal Schiff base and the general base are protonated. The resulting α-aminoacrylate intermediate undergoes a Michael addition with HS‾ and the active site lysine donates its proton to the α-carbon to give cysteine and regenerate enzyme to start the second half reaction. In addition, substrate specificity, stereochemistry of the internal Schiff base at C4', and sequence around active site lysine of O-acetylserine sulfhydrylase-A have been determined. The [4'-^3H]pyridoxamine generated by reduction of the internal Schiff base with sodium [^3H]borohydride retained most of its tritium after incubation with apoaspartate aminotransferase. These results agree with the hypothesis put forth by Dunathan (Dunathan, 1971; Dunathan and Voet, 1974) that a single surface (Re face) of the active site PLP is accessible to solvent. The sequence around the active site ...
Date: August 1993
Creator: Tai, Chia-Hui
Partner: UNT Libraries

Protein Kinase C Activation in Hyperglycemic Bovine Lens Epithelial Cells

Description: This study demonstrates the presence of protein kinase C activity in both cytosolic and membrane fractions of bovine lens epithelial cells in culture. Protein kinase C activity is similar in normal and hyperglycemic cells. Furthermore, the ability of the enzyme to translocate from the cytosol to the membrane following phorbol ester treatment is unimpeded by hyperglycemic conditions. Moreover, protein kinase C activation had no effect on myoinositol uptake either in normal cells or in cells exposed to hyperglycemic conditions.
Date: December 1993
Creator: Fan, Wen-Lin
Partner: UNT Libraries

Autophosphorylation and Autoactivation of an S6/H4 Kinase Isolated From Human Placenta

Description: A number of protein kinases have been shown to undergo autophosphorylation, but few have demonstrated a coordinate increase or decrease in enzymatic activity as a result. Described here is a novel S6 kinase isolated from human placenta which autoactivates through autophosphorylation in vitro. This S6/H4 kinase, purified in an inactive state, was shown to be a protein of Mr of 60,000 as estimated by SDS-PAGE and could catalyze the phosphorylation of the synthetic peptide S6-21, the histone H4, and myelin basic protein. Mild digestion of the inactive S6/H4 kinase with trypsin was necessary, but not sufficient, to activate the kinase fully
Date: May 1994
Creator: Dennis, Patrick B. (Patrick Brian)
Partner: UNT Libraries

Characterization of a Human 28S Ribosomal RNA Retropseudogene and Other Repetitive DNA Sequence Elements Isolated from a Human X Chromosome-Specific Library

Description: Three genomic clones encompassing human DNA segments (designated LhX-3, LhX-4, and LhX5) were isolated from an X chromosome-specific library and subjected to analysis by physical mapping and DNA sequencing. It was found that these three clones are very rich in repetitive DNA sequence elements and retropseudogenes.
Date: May 1994
Creator: Wang, Suyue
Partner: UNT Libraries

N-Acylethanolamines and Plant Phospholipase D

Description: Recently, three distinct isoforms of phospholipase D (PLD) were identified in Arabidopsis thaliana. PLD α represents the well-known form found in plants, while PLD β and γ have been only recently discovered (Pappan et al., 1997b; Qin et al., 1997). These isoforms differ in substrate selectivity and cofactors required for activity. Here, I report that PLD β and γ isoforms were active toward N-acylphosphatidylethanolamine (NAPE), but PLD α was not. The ability of PLD β and γ to hydrolyze NAPE marks a key difference from PLD α. N-acylethanolamines (NAE), the hydrolytic products of NAPE by PLD β and γ, inhibited PLD α from castor bean and cabbage. Inhibition of PLD α by NAE was dose-dependent and inversely proportional to acyl chain length and degree of unsaturation. Enzyme kinetic analysis suggested non-competitive inhibition of PLD α by NAE 14:0. In addition, a 1.2-kb tobacco (Nicotiana tabacum L.) cDNA fragment was isolated that possessed a 74% amino acid identity to Arabidopsis PLD β indicating that this isoform is expressed in tobacco cells. Collectively, these results provide evidence for NAE producing PLD activities and suggest a possible regulatory role for NAE with respect to PLD α.
Date: December 1998
Creator: Brown, Shea Austin
Partner: UNT Libraries

Cottonseed Microsomal N-Acylphosphatidylethanolamine Synthase: Identification, Purification and Biochemical Characterization of a Unique Acyltransferase

Description: N-Acylphosphatidylethanoiamine (NAPE) is synthesized in the microsomes of cotton seedlings by a mechanism that is possibly unique to plants, the ATP-, Ca2+-, and CoA-independent acylation ofphosphatidylethanolamine (PE) with unesterified free fatty acids (FFAs), catalyzed by NAPE synthase. A photoreactive free fatty acid analogue, 12-[(4- azidosalicyl)amino]dodecanoic acid (ASD), and its 125I-labeled derivative acted as substrates for the NAPE synthase enzyme.
Date: December 1998
Creator: McAndrew, Rosemary S. (Rosemary Smith)
Partner: UNT Libraries

Regulation of an S6/H4 Kinase in Crude Lymphosarcoma P1798 Preparations

Description: Purified S6/H4 kinase (Mr 60,000) requires autophosphorylation for activation. A rabbit anti-S6/H4 kinase peptide (SVIDPVPAPVGDSHVDGAAK) antibody recognized both the S6/H4 kinase holoenzyme and catalytic domain. Immunoreactivity with p60 kinase protein, and S6/H4 kinase activity were precisely correlated in fractions obtained from ion exchange chromatography of P1798 lymphosarcoma extracts. An enzyme which catalyzed the MgATP-dependent phosphorylation and activation of S6/H4 kinase coeluted with immunoreactivity from Mono 5, but not Mono Q chromatography. Since S6/H4 kinase is homologous with rac-activated PAK65, the observation that phosphorylation is also required for activation suggests a complex mechanism for in vivo activation of the S6/H4 kinase.
Date: December 1998
Creator: Taylor, Allison Antoinette
Partner: UNT Libraries

Nucleotide Inhibition of Glyoxalase II

Description: The glyoxalase system mediates the conversion of methylglyoxal, a toxic ketoaldehyde, to D-lactic acid. The system is composed of two enzymes, glyoxalase I (Glo-I) and glyoxalase II (Glo-II), and exhibits an absolute requirement for a catalytic quantity of glutathione (GSH). Glo-I catalyzes the isomerization of a hemithioacetal, formed non-enzymatically from methylglyoxal and GSH, to the corresponding a -D-hydroxyacid thioester, s-D-lactoylglutathione (SLG). Glo-II catalyzes the irreversible breakdown of SLG to D-lactate and GSH. We have observed that ATP or GTP significantly inhibits the Glo-II activity of tissue homogenates from various sources. We have developed a rapid, one step chromatography procedure to purify Glo-II such that the purified enzyme remains "sensitive" to inhibition by ATP or GTP (Glo-II-s). Studies indicate that inhibition of Glo-II-s by nucleotides is restricted to ATP, GTP, ADP, and GDP, with ATP appearing most effective. Kinetics studies have shown that ATP acts as a partial non-competitive inhibitor of Glo-II-s activity, and further suggest that two kinetically distinguishable forms of the enzyme exist. The sensitivity of pure Glo-II-s to nucleotide inhibition is slowly lost on storage even at -80° C. This loss is accelerated at higher temperatures or in the presence of ATP. Kinetics studies on the resultant "insensitive" enzyme (Glo-II-i) show that a significant reduction of the affinity of the enzyme for the substrate, SLG, occurs and further suggest that only one form of the enzyme is kinetically distinguishable after "de-sensitization". Tryptophan fluorescence studies of the two enzyme preparations suggest that a subtle conformational change in the enzyme has occurred during de-sensitization. We have also observed that Glo-II-i is "resensitized" to nucleotide inhibition after incubation in the presence of a reagent that reduces disulfide bonds. The resensitized enzyme exhibits an increased KM value similar to that of the original Glo-II-s. Kinetics studies show that ATP or GTP again ...
Date: May 1999
Creator: Gillis, Glen S
Partner: UNT Libraries

Conformational Studies of Myosin and Actin with Calibrated Resonance Energy Transfer

Description: Resonance energy transfer was employed to study the conformational changes of actomyosin during ATP hydrolysis. To calibrate the technique, the parameters for resonance energy transfer were defined. With conformational searching algorithms to predict probe orientation, the distances measured by resonance energy transfer are highly consistent with the atomic models, which verified the accuracy and feasibility of resonance energy transfer for structural studies of proteins and oligonucleotides. To study intramyosin distances, resonance energy transfer probes were attached to skeletal myosin's nucleotide site, subfragment-2, and regulatory light chain to examine nucleotide analog-induced structural transitions. The distances between the three positions were measured in the presence of different nucleotide analogs. No distance change was considered to be statistically significant. The measured distance between the regulatory light chain and nucleotide site was consistent with either the atomic model of skeletal myosin subfragment-1 or an average of the three models claimed for different ATP hydrolysis states, which suggested that the neck region was flexible in solution. To examine the participation of actin in the powerstroke process, resonance energy transfer between different sites on actin and myosin was measured in the presence of nucleotide analogs. The efficiencies of energy transfer between myosin catalytic domain and actin were consistent with the actoS1 docking model. However, the neck region was much closer to the actin filament than predicted by static atomic models. The efficiency of energy transfer between Cys 374 and the regulatory light chain was much greater in the presence of ADP-AlF4, ADP-BeFx, and ADP-vanadate than in the presence of ADP or no nucleotide. These data detect profound differences in the conformations of the weakly and strongly attached crossbridges which appear to result from a conformational selection that occurs during the weak binding of the myosin head to actin. The resonance energy transfer data exclude a number ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2000
Creator: Xu, Jin
Partner: UNT Libraries

Noncovalent Crosslinking of SH1 and SH2 to Detect Dynamic Flexibility of the SH1 Helix

Description: In this experiment, fluorescent N- (1-pyrenyl) iodoacetamide modified the two reactive thiols, SH1 (Cys 707) and SH2 (Cys 697) on myosin to detect SH1-SH2 a -helix melting. The excimer forming property of pyrene is well suited to monitor the dynamics of the SH1 and SH2 helix melting, since the excimer should only form during the melted state. Decreased anisotropy of the excimer relative to the monomeric pyrene fluorescence is consistent with the disordering of the melted SH1-SH2 region in the atomic model. Furthermore, nucleotide analogs induced changes in the anisotropy of the excimer, suggesting that the nucleotide site modulates the flexibility of SH1-SH2 region.
Date: August 2000
Creator: Park, Hyunguk
Partner: UNT Libraries

Palmitoyl-acyl Carrier Protein Thioesterase in Cotton (Gossypium hirsutum L.): Biochemical and Molecular Characterization of a Major Mechanism for the Regulation of Palmitic Acid Content

Description: The relatively high level of palmitic acid (22 mol%) in cottonseeds may be due in part to the activity of a palmitoyl-acyl carrier protein (ACP) thioesterase (PATE). In embryo extracts, PATE activity was highest at the maximum rate of reserve accumulation (oil and protein). The cotton FatB mRNA transcript abundance also peaked during this developmental stage, paralleling the profiles of PATE enzyme activity and seed oil accumulation. A cotton FatB cDNA clone was isolated by screening a cDNA library with a heterologous Arabidopsis FatB probe (Pirtle et al., 1999, Plant and Cell Physiology 40: 155-163). The predicted amino acid sequence of the cotton PATE preprotein had 63% identity to the Arabidopsis FatB thioesterase sequence, suggesting that the cotton cDNA clone probably encoded a FatB-type thioesterase. When acyl-CoA synthetase-minus E. coli mutants expressed the cotton cDNA, an increase in 16:0 free fatty acid content was measured in the culture medium. In addition, acyl-ACP thioesterase activity assays in E. coli lysates revealed that there was a preference for palmitoyl-ACP over oleoyl-ACP in vitro, indicating that the cotton putative FatB cDNA encoded a functional thioesterase with a preference for saturated acyl-ACPs over unsaturated acyl-ACPs (FatA). Overexpression of the FatB cDNA in transgenic cotton resulted in elevated levels of palmitic acid in transgenic somatic embryos compared to control embryos. Expression of the anti-sense FatB cDNA in transgenic cotton plants produced some plants with a dwarf phenotype. These plants had significantly smaller mature leaves, all with smaller cells, suggesting that these plants may have less palmitic acid available for incorporation into extraplastidial membrane lipids during cell expansion. Thus manipulation of FatB expression in cotton directly influenced palmitic acid levels. Collectively, data presented in this dissertation support the hypothesis that there indeed is a palmitoyl-ACP thioesterase in cotton, encoded by the isolated FatB cDNA, which plays ...
Date: August 2001
Creator: Huynh, Tu T
Partner: UNT Libraries

Plastidial carbonic anhydrase in cotton (Gossypium hirsutum L.): characterization, expression, and role in lipid biosynthesis

Description: Recently, plastidial carbonic anhydrase (CA, EC cDNA clones encoding functional CA enzymes were isolated from a nonphotosynthetic cotton tissue. The role of CA in photosynthetic tissues have been well characterized, however there is almost no information for the role of CA in nonphotosynthetic tissues. A survey of relative CA transcript abundance and enzyme activity in different cotton organs revealed that there was substantial CA expression in cotyledons of seedlings and embryos, both nonphotosynthetic tissues. To gain insight into the role(s) of CA, I examined CA expression in cotyledons of seedlings during post-germinative growth at different environmental conditions. CA expression in cotyledons of seedlings increased from 18 h to 72 h after germination in the dark. Seedlings exposed to light had about a 2-fold increase in CA activities when compared with seedlings kept in the dark, whereas relative CA transcript levels were essentially the same. Manipulation of external CO2 environments [zero, ambient (350 ppm), or high (1000 ppm)] modulated coordinately the relative transcript abundance of CA (and rbcS) in cotyledons, but did not affect enzyme activities. On the other hand, regardless of the external CO2 conditions seedlings exposed to light exhibited increase CA activity, concomitant with Rubisco activity and increased chlorophyll content. Our data revealed that steady-state levels of CA and rbcS transcripts are regulated at the transcriptional level in response to external CO2 conditions, while CA and Rubisco activities are modulated at the post-transcriptional level by light. Thus CA expression in cotyledons during post-germinative growth may be to “prime” cotyledons for the transition at the subcellular level for the transition from plastids to chloroplasts, where it provides CO2 for Rubisco during photosynthesis. Furthermore, CA expression increased during embryo maturation similar to oil accumulation. Specific sulfonamide inhibitors of CA activity significantly reduced the rate of [14C]-acetate incorporation into total lipids ...
Date: August 2001
Creator: Hoang, Chau V.
Partner: UNT Libraries