UNT Theses and Dissertations - Browse

ABOUT BROWSE FEED

Computational Epidemiology - Analyzing Exposure Risk: A Deterministic, Agent-Based Approach

Description: Many infectious diseases are spread through interactions between susceptible and infectious individuals. Keeping track of where each exposure to the disease took place, when it took place, and which individuals were involved in the exposure can give public health officials important information that they may use to formulate their interventions. Further, knowing which individuals in the population are at the highest risk of becoming infected with the disease may prove to be a useful tool for public health officials trying to curtail the spread of the disease. Epidemiological models are needed to allow epidemiologists to study the population dynamics of transmission of infectious agents and the potential impact of infectious disease control programs. While many agent-based computational epidemiological models exist in the literature, they focus on the spread of disease rather than exposure risk. These models are designed to simulate very large populations, representing individuals as agents, and using random experiments and probabilities in an attempt to more realistically guide the course of the modeled disease outbreak. The work presented in this thesis focuses on tracking exposure risk to chickenpox in an elementary school setting. This setting is chosen due to the high level of detailed information realistically available to school administrators regarding individuals' schedules and movements. Using an agent-based approach, contacts between individuals are tracked and analyzed with respect to both individuals and locations. The results are then analyzed using a combination of tools from computer science and geographic information science.
Date: August 2009
Creator: O'Neill II, Martin Joseph
Partner: UNT Libraries

Resource Allocation in Mobile and Wireless Networks

Description: The resources (memory, power and bandwidth) are limited in wireless and mobile networks. Previous research has shown that the quality of service (QoS) of the mobile client can be improved through efficient resources management. This thesis contains two areas of research that are strongly interrelated. In the first area of research, we extended the MoSync Algorithm, a network application layer media synchronization algorithm, to allow play-out of multimedia packets by the base station upon the mobile client in a First-In-First-Out (FIFO), Highest-Priority-First (PQ), Weighted Fair-Queuing (WFQ) and Round-Robin (RR) order. In the second area of research, we make modifications to the DSR and TORA routing algorithms to make them energy aware routing protocols. Our research shows that the QoS of the mobile client can be drastically improved through effective resource allocation.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2003
Creator: Owens II, Harold
Partner: UNT Libraries

A Multi-Variate Analysis of SMTP Paths and Relays to Restrict Spam and Phishing Attacks in Emails

Description: The classifier discussed in this thesis considers the path traversed by an email (instead of its content) and reputation of the relays, features inaccessible to spammers. Groups of spammers and individual behaviors of a spammer in a given domain were analyzed to yield association patterns, which were then used to identify similar spammers. Unsolicited and phishing emails were successfully isolated from legitimate emails, using analysis results. Spammers and phishers are also categorized into serial spammers/phishers, recent spammers/phishers, prospective spammers/phishers, and suspects. Legitimate emails and trusted domains are classified into socially close (family members, friends), socially distinct (strangers etc), and opt-outs (resolved false positives and false negatives). Overall this classifier resulted in far less false positives when compared to current filters like SpamAssassin, achieving a 98.65% precision, which is well comparable to the precisions achieved by SPF, DNSRBL blacklists.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2006
Creator: Palla, Srikanth
Partner: UNT Libraries

Intelligent Memory Management Heuristics

Description: Automatic memory management is crucial in implementation of runtime systems even though it induces a significant computational overhead. In this thesis I explore the use of statistical properties of the directed graph describing the set of live data to decide between garbage collection and heap expansion in a memory management algorithm combining the dynamic array represented heaps with a mark and sweep garbage collector to enhance its performance. The sampling method predicting the density and the distribution of useful data is implemented as a partial marking algorithm. The algorithm randomly marks the nodes of the directed graph representing the live data at different depths with a variable probability factor p. Using the information gathered by the partial marking algorithm in the current step and the knowledge gathered in the previous iterations, the proposed empirical formula predicts with reasonable accuracy the density of live nodes on the heap, to decide between garbage collection and heap expansion. The resulting heuristics are tested empirically and shown to improve overall execution performance significantly in the context of the Jinni Prolog compiler's runtime system.
Date: December 2003
Creator: Panthulu, Pradeep
Partner: UNT Libraries

Optimal Access Point Selection and Channel Assignment in IEEE 802.11 Networks

Description: Designing 802.11 wireless networks includes two major components: selection of access points (APs) in the demand areas and assignment of radio frequencies to each AP. Coverage and capacity are some key issues when placing APs in a demand area. APs need to cover all users. A user is considered covered if the power received from its corresponding AP is greater than a given threshold. Moreover, from a capacity standpoint, APs need to provide certain minimum bandwidth to users located in the coverage area. A major challenge in designing wireless networks is the frequency assignment problem. The 802.11 wireless LANs operate in the unlicensed ISM frequency, and all APs share the same frequency. As a result, as 802.11 APs become widely deployed, they start to interfere with each other and degrade network throughput. In consequence, efficient assignment of channels becomes necessary to avoid and minimize interference. In this work, an optimal AP selection was developed by balancing traffic load. An optimization problem was formulated that minimizes heavy congestion. As a result, APs in wireless LANs will have well distributed traffic loads, which maximize the throughput of the network. The channel assignment algorithm was designed by minimizing channel interference between APs. The optimization algorithm assigns channels in such a way that minimizes co-channel and adjacent channel interference resulting in higher throughput.
Date: December 2004
Creator: Park, Sangtae
Partner: UNT Libraries

CLUE: A Cluster Evaluation Tool

Description: Modern high performance computing is dependent on parallel processing systems. Most current benchmarks reveal only the high level computational throughput metrics, which may be sufficient for single processor systems, but can lead to a misrepresentation of true system capability for parallel systems. A new benchmark is therefore proposed. CLUE (Cluster Evaluator) uses a cellular automata algorithm to evaluate the scalability of parallel processing machines. The benchmark also uses algorithmic variations to evaluate individual system components' impact on the overall serial fraction and efficiency. CLUE is not a replacement for other performance-centric benchmarks, but rather shows the scalability of a system and provides metrics to reveal where one can improve overall performance. CLUE is a new benchmark which demonstrates a better comparison among different parallel systems than existing benchmarks and can diagnose where a particular parallel system can be optimized.
Date: December 2006
Creator: Parker, Brandon S.
Partner: UNT Libraries

Impact of actual interference on capacity and call admission control in a CDMA network.

Description: An overwhelming number of models in the literature use average inter-cell interference for the calculation of capacity of a Code Division Multiple Access (CDMA) network. The advantage gained in terms of simplicity by using such models comes at the cost of rendering the exact location of a user within a cell irrelevant. We calculate the actual per-user interference and analyze the effect of user-distribution within a cell on the capacity of a CDMA network. We show that even though the capacity obtained using average interference is a good approximation to the capacity calculated using actual interference for a uniform user distribution, the deviation can be tremendously large for non-uniform user distributions. Call admission control (CAC) algorithms are responsible for efficient management of a network's resources while guaranteeing the quality of service and grade of service, i.e., accepting the maximum number of calls without affecting the quality of service of calls already present in the network. We design and implement global and local CAC algorithms, and through simulations compare their network throughput and blocking probabilities for varying mobility scenarios. We show that even though our global CAC is better at resource management, the lack of substantial gain in network throughput and exponential increase in complexity makes our optimized local CAC algorithm a much better choice for a given traffic distribution profile.
Date: May 2004
Creator: Parvez, Asad
Partner: UNT Libraries

Anchor Nodes Placement for Effective Passive Localization

Description: Wireless sensor networks are composed of sensor nodes, which can monitor an environment and observe events of interest. These networks are applied in various fields including but not limited to environmental, industrial and habitat monitoring. In many applications, the exact location of the sensor nodes is unknown after deployment. Localization is a process used to find sensor node's positional coordinates, which is vital information. The localization is generally assisted by anchor nodes that are also sensor nodes but with known locations. Anchor nodes generally are expensive and need to be optimally placed for effective localization. Passive localization is one of the localization techniques where the sensor nodes silently listen to the global events like thunder sounds, seismic waves, lighting, etc. According to previous studies, the ideal location to place anchor nodes was on the perimeter of the sensor network. This may not be the case in passive localization, since the function of anchor nodes here is different than the anchor nodes used in other localization systems. I do extensive studies on positioning anchor nodes for effective localization. Several simulations are run in dense and sparse networks for proper positioning of anchor nodes. I show that, for effective passive localization, the optimal placement of the anchor nodes is at the center of the network in such a way that no three anchor nodes share linearity. The more the non-linearity, the better the localization. The localization for our network design proves better when I place anchor nodes at right angles.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2010
Creator: Pasupathy, Karthikeyan
Partner: UNT Libraries

Automated Defense Against Worm Propagation.

Description: Worms have caused significant destruction over the last few years. Network security elements such as firewalls, IDS, etc have been ineffective against worms. Some worms are so fast that a manual intervention is not possible. This brings in the need for a stronger security architecture which can automatically react to stop worm propagation. The method has to be signature independent so that it can stop new worms. In this thesis, an automated defense system (ADS) is developed to automate defense against worms and contain the worm to a level where manual intervention is possible. This is accomplished with a two level architecture with feedback at each level. The inner loop is based on control system theory and uses the properties of PID (proportional, integral and differential controller). The outer loop works at the network level and stops the worm to reach its spread saturation point. In our lab setup, we verified that with only inner loop active the worm was delayed, and with both loops active we were able to restrict the propagation to 10% of the targeted hosts. One concern for deployment of a worm containment mechanism was degradation of throughput for legitimate traffic. We found that with proper intelligent algorithm we can minimize the degradation to an acceptable level.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2005
Creator: Patwardhan, Sudeep
Partner: UNT Libraries

Mediation on XQuery Views

Description: The major goal of information integration is to provide efficient and easy-to-use access to multiple heterogeneous data sources with a single query. At the same time, one of the current trends is to use standard technologies for implementing solutions to complex software problems. In this dissertation, I used XML and XQuery as the standard technologies and have developed an extended projection algorithm to provide a solution to the information integration problem. In order to demonstrate my solution, I implemented a prototype mediation system called Omphalos based on XML related technologies. The dissertation describes the architecture of the system, its metadata, and the process it uses to answer queries. The system uses XQuery expressions (termed metaqueries) to capture complex mappings between global schemas and data source schemas. The system then applies these metaqueries in order to rewrite a user query on a virtual global database (representing the integrated view of the heterogeneous data sources) to a query (termed an outsourced query) on the real data sources. An extended XML document projection algorithm was developed to increase the efficiency of selecting the relevant subset of data from an individual data source to answer the user query. The system applies the projection algorithm to decompose an outsourced query into atomic queries which are each executed on a single data source. I also developed an algorithm to generate integrating queries, which the system uses to compose the answers from the atomic queries into a single answer to the original user query. I present a proof of both the extended XML document projection algorithm and the query integration algorithm. An analysis of the efficiency of the new extended algorithm is also presented. Finally I describe a collaborative schema-matching tool that was implemented to facilitate maintaining metadata.
Date: December 2006
Creator: Peng, Xiaobo
Partner: UNT Libraries

Recognition of Face Images

Description: The focus of this dissertation is a methodology that enables computer systems to classify different up-front images of human faces as belonging to one of the individuals to which the system has been exposed previously. The images can present variance in size, location of the face, orientation, facial expressions, and overall illumination. The approach to the problem taken in this dissertation can be classified as analytic as the shapes of individual features of human faces are examined separately, as opposed to holistic approaches to face recognition. The outline of the features is used to construct signature functions. These functions are then magnitude-, period-, and phase-normalized to form a translation-, size-, and rotation-invariant representation of the features. Vectors of a limited number of the Fourier decomposition coefficients of these functions are taken to form the feature vectors representing the features in the corresponding vector space. With this approach no computation is necessary to enforce the translational, size, and rotational invariance at the stage of recognition thus reducing the problem of recognition to the k-dimensional clustering problem. A recognizer is specified that can reliably classify the vectors of the feature space into object classes. The recognizer made use of the following principle: a trial vector is classified into a class with the greatest number of closest vectors (in the sense of the Euclidean distance) among all vectors representing the same feature in the database of known individuals. A system based on this methodology is implemented and tried on a set of 50 pictures of 10 individuals (5 pictures per individual). The recognition rate is comparable to that of most recent results in the area of face recognition. The methodology presented in this dissertation is also applicable to any problem of pattern recognition where patterns can be represented as a collection of black ...
Date: December 1994
Creator: Pershits, Edward
Partner: UNT Libraries

Study of Parallel Algorithms Related to Subsequence Problems on the Sequent Multiprocessor System

Description: The primary purpose of this work is to study, implement and analyze the performance of parallel algorithms related to subsequence problems. The problems include string to string correction problem, to determine the longest common subsequence problem and solving the sum-range-product, 1 —D pattern matching, longest non-decreasing (non-increasing) (LNS) and maximum positive subsequence (MPS) problems. The work also includes studying the techniques and issues involved in developing parallel applications. These algorithms are implemented on the Sequent Multiprocessor System. The subsequence problems have been defined, along with performance metrics that are utilized. The sequential and parallel algorithms have been summarized. The implementation issues which arise in the process of developing parallel applications have been identified and studied.
Date: August 1994
Creator: Pothuru, Surendra
Partner: UNT Libraries

A Security Model for Mobile Agents using X.509 Proxy Certificates

Description: Mobile agent technology presents an attractive alternative to the client-server paradigm for several network and real-time applications. However, for most applications, the lack of a viable agent security model has limited the adoption of the agent paradigm. This thesis presents a security model for mobile agents based on a security infrastructure for Computational Grids, and specifically, on X.509 Proxy Certificates. Proxy Certificates serve as credentials for Grid applications, and their primary purpose is temporary delegation of authority. Exploiting the similarity between Grid applications and mobile agent applications, this thesis motivates the use of Proxy Certificates as credentials for mobile agents. A new extension for Proxy Certificates is proposed in order to make them suited to mobile agent applications, and mechanisms are presented for agent-to-host authentication, restriction of agent privileges, and secure delegation of authority during spawning of new agents. Finally, the implementation of the proposed security mechanisms as modules within a multi-lingual and modular agent infrastructure, the Distributed Agent Delivery System, is discussed.
Date: December 2002
Creator: Raghunathan, Subhashini
Partner: UNT Libraries

Intelligent Memory Manager: Towards improving the locality behavior of allocation-intensive applications.

Description: Dynamic memory management required by allocation-intensive (i.e., Object Oriented and linked data structured) applications has led to a large number of research trends. Memory performance due to the cache misses in these applications continues to lag in terms of execution cycles as ever increasing CPU-Memory speed gap continues to grow. Sophisticated prefetcing techniques, data relocations, and multithreaded architectures have tried to address memory latency. These techniques are not completely successful since they require either extra hardware/software in the system or special properties in the applications. Software needed for prefetching and data relocation strategies, aimed to improve cache performance, pollutes the cache so that the technique itself becomes counter-productive. On the other hand, extra hardware complexity needed in multithreaded architectures decelerates CPU's clock, since "Simpler is Faster." This dissertation, directed to seek the cause of poor locality behavior of allocation--intensive applications, studies allocators and their impact on the cache performance of these applications. Our study concludes that service functions, in general, and memory management functions, in particular, entangle with application's code and become the major cause of cache pollution. In this dissertation, we present a novel technique that transfers the allocation and de-allocation functions entirely to a separate processor residing in chip with DRAM (Intelligent Memory Manager). Our empirical results show that, on average, 60% of the cache misses caused by allocation and de-allocation service functions are eliminated using our technique.
Date: May 2004
Creator: Rezaei, Mehran
Partner: UNT Libraries

Procedural content creation and technologies for 3D graphics applications and games.

Description: The recent transformation of consumer graphics (CG) cards into powerful 3D rendering processors is due in large measure to the success of game developers in delivering mass market entertainment software that feature highly immersive and captivating virtual environments. Despite this success, 3D CG application development is becoming increasingly handicapped by the inability of traditional content creation methods to keep up with the demand for content. The term content is used here to refer to any data operated on by application code that is meant for viewing, including 3D models, textures, animation sequences and maps or other data-intensive descriptions of virtual environments. Traditionally, content has been handcrafted by humans. A serious problem facing the interactive graphics software development community is how to increase the rate at which content can be produced to keep up with the increasingly rapid pace at which software for interactive applications can now be developed. Research addressing this problem centers around procedural content creation systems. By moving away from purely human content creation toward systems in which humans play a substantially less time-intensive but no less creative part in the process, procedural content creation opens new doors. From a qualitative standpoint, these types of systems will not rely less on human intervention but rather more since they will depend heavily on direction from a human in order to synthesize the desired content. This research draws heavily from the entertainment software domain but the research is broadly relevant to 3D graphics applications in general.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2005
Creator: Roden, Timothy E.
Partner: UNT Libraries

A Comparison of File Organization Techniques

Description: This thesis compares the file organization techniques that are implemented on two different types of computer systems, the large-scale and the small-scale. File organizations from representative computers in each class are examined in detail: the IBM System/370 (OS/370) and the Harris 1600 Distributed Processing System with the Extended Communications Operating System (ECOS). In order to establish the basic framework for comparison, an introduction to file organizations is presented. Additionally, the functional requirements for file organizations are described by their characteristics and user demands. Concluding remarks compare file organization techniques and discuss likely future developments of file systems.
Date: August 1977
Creator: Rogers, Roy Lee
Partner: UNT Libraries

An Implementation of the IEEE Standard for Binary Floating-Point Arithmetic for the Motorola 6809 Microprocessor

Description: This thesis describes a software implementation of the IEEE Floating-Point Standard (IEEE Task P754), which is believed to be an effective system for reliable, accurate computer arithmetic. The standard is implemented as a set of procedures written in Motorola 6809 assembly language. Source listings of the procedures are contained in appendices.
Date: August 1983
Creator: Rosenblum, David Samuel
Partner: UNT Libraries

A Machine Learning Method Suitable for Dynamic Domains

Description: The efficacy of a machine learning technique is domain dependent. Some machine learning techniques work very well for certain domains but are ill-suited for other domains. One area that is of real-world concern is the flexibility with which machine learning techniques can adapt to dynamic domains. Currently, there are no known reports of any system that can learn dynamic domains, short of starting over (i.e., re-running the program). Starting over is neither time nor cost efficient for real-world production environments. This dissertation studied a method, referred to as Experience Based Learning (EBL), that attempts to deal with conditions related to learning dynamic domains. EBL is an extension of Instance Based Learning methods. The hypothesis of the study related to this research was that the EBL method would automatically adjust to domain changes and still provide classification accuracy similar to methods that require starting over. To test this hypothesis, twelve widely studied machine learning datasets were used. A dynamic domain was simulated by presenting these datasets in an uninterrupted cycle of train, test, and retrain. The order of the twelve datasets and the order of records within each dataset were randomized to control for order biases in each of ten runs. As a result, these methods provided datasets that represent extreme levels of domain change. Using the above datasets, EBL's mean classification accuracies for each dataset were compared to the published static domain results of other machine learning systems. The results indicated that the EBL's system performance was not statistically different (p>0.30) from the other machine learning methods. These results indicate that the EBL system is able to adjust to an extreme level of domain change and yet produce satisfactory results. This finding supports the use of the EBL method in real-world environments that incur rapid changes to both variables and ...
Date: July 1996
Creator: Rowe, Michael C. (Michael Charles)
Partner: UNT Libraries

Dynamic Grid-Based Data Distribution Management in Large Scale Distributed Simulations

Description: Distributed simulation is an enabling concept to support the networked interaction of models and real world elements that are geographically distributed. This technology has brought a new set of challenging problems to solve, such as Data Distribution Management (DDM). The aim of DDM is to limit and control the volume of the data exchanged during a distributed simulation, and reduce the processing requirements of the simulation hosts by relaying events and state information only to those applications that require them. In this thesis, we propose a new DDM scheme, which we refer to as dynamic grid-based DDM. A lightweight UNT-RTI has been developed and implemented to investigate the performance of our DDM scheme. Our results clearly indicate that our scheme is scalable and it significantly reduces both the number of multicast groups used, and the message overhead, when compared to previous grid-based allocation schemes using large-scale and real-world scenarios.
Date: December 2000
Creator: Roy, Amber Joyce
Partner: UNT Libraries

Elicitation of Protein-Protein Interactions from Biomedical Literature Using Association Rule Discovery

Description: Extracting information from a stack of data is a tedious task and the scenario is no different in proteomics. Volumes of research papers are published about study of various proteins in several species, their interactions with other proteins and identification of protein(s) as possible biomarker in causing diseases. It is a challenging task for biologists to keep track of these developments manually by reading through the literatures. Several tools have been developed by computer linguists to assist identification, extraction and hypotheses generation of proteins and protein-protein interactions from biomedical publications and protein databases. However, they are confronted with the challenges of term variation, term ambiguity, access only to abstracts and inconsistencies in time-consuming manual curation of protein and protein-protein interaction repositories. This work attempts to attenuate the challenges by extracting protein-protein interactions in humans and elicit possible interactions using associative rule mining on full text, abstracts and captions from figures available from publicly available biomedical literature databases. Two such databases are used in our study: Directory of Open Access Journals (DOAJ) and PubMed Central (PMC). A corpus is built using articles based on search terms. A dataset of more than 38,000 protein-protein interactions from the Human Protein Reference Database (HPRD) is cross-referenced to validate discovered interactive pairs. A set of an optimal size of possible binary protein-protein interactions is generated to be made available for clinician or biological validation. A significant change in the number of new associations was found by altering the thresholds for support and confidence metrics. This study narrows down the limitations for biologists in keeping pace with discovery of protein-protein interactions via manually reading the literature and their needs to validate each and every possible interaction.
Date: August 2010
Creator: Samuel, Jarvie John
Partner: UNT Libraries

Rollback Reduction Techniques Through Load Balancing in Optimistic Parallel Discrete Event Simulation

Description: Discrete event simulation is an important tool for modeling and analysis. Some of the simulation applications such as telecommunication network performance, VLSI logic circuits design, battlefield simulation, require enormous amount of computing resources. One way to satisfy this demand for computing power is to decompose the simulation system into several logical processes (Ip) and run them concurrently. In any parallel discrete event simulation (PDES) system, the events are ordered according to their time of occurrence. In order for the simulation to be correct, this ordering has to be preserved. There are three approaches to maintain this ordering. In a conservative system, no lp executes an event unless it is certain that all events with earlier time-stamps have been executed. Such systems are prone to deadlock. In an optimistic system on the other hand, simulation progresses disregarding this ordering and saves the system states regularly. Whenever a causality violation is detected, the system rolls back to a state saved earlier and restarts processing after correcting the error. There is another approach in which all the lps participate in the computation of a safe time-window and all events with time-stamps within this window are processed concurrently. In optimistic simulation systems, there is a global virtual time (GVT), which is the minimum of the time-stamps of all the events existing in the system. The system can not rollback to a state prior to GVT and hence all such states can be discarded. GVT is used for memory management, load balancing, termination detection and committing of events. However, GVT computation introduces additional overhead. In optimistic systems, large number of rollbacks can degrade the system performance considerably. We have studied the effect of load balancing in reducing the number of rollbacks in such systems. We have designed three load balancing algorithms and implemented two of ...
Date: May 1996
Creator: Sarkar, Falguni
Partner: UNT Libraries

Towards Resistance Detection in Health Behavior Change Dialogue Systems

Description: One of the challenges fairly common in motivational interviewing is patient resistance to health behavior change. Hence, automated dialog systems aimed at counseling patients need to be capable of detecting resistance and appropriately altering dialog. This thesis focusses primarily on the development of such a system for automatic identification of patient resistance to behavioral change. This enables the dialogue system to direct the discourse towards a more agreeable ground and helping the patient overcome the obstacles in his or her way to change. This thesis also proposes a dialogue system framework for health behavior change via natural language analysis and generation. The proposed framework facilitates automated motivational interviewing from clinical psychology and involves three broad stages: rapport building and health topic identification, assessment of the patient’s opinion about making a change, and developing a plan. Using this framework patients can be encouraged to reflect on the options available and choose the best for a healthier life.
Date: August 2015
Creator: Sarma, Bandita
Partner: UNT Libraries

Urban surface characterization using LiDAR and aerial imagery.

Description: Many calamities in history like hurricanes, tornado and flooding are proof to the large scale impact they cause to the life and economy. Computer simulation and GIS helps in modeling a real world scenario, which assists in evacuation planning, damage assessment, assistance and reconstruction. For achieving computer simulation and modeling there is a need for accurate classification of ground objects. One of the most significant aspects of this research is that it achieves improved classification for regions within which light detection and ranging (LiDAR) has low spatial resolution. This thesis describes a method for accurate classification of bare ground, water body, roads, vegetation, and structures using LiDAR data and aerial Infrared imagery. The most basic step for any terrain modeling application is filtering which is classification of ground and non-ground points. We present an integrated systematic method that makes classification of terrain and non-terrain points effective. Our filtering method uses the geometric feature of the triangle meshes created from LiDAR samples and calculate the confidence for every point. Geometric homogenous blocks and confidence are derived from TIN model and gridded LiDAR samples. The results from two representations are used in a classifier to determine if the block belongs ground or otherwise. Another important step is detection of water body, which is based on the LiDAR sample density of the region. Objects like tress and bare ground are characterized by the geometric features present in the LiDAR and the color features in the infrared imagery. These features are fed into a SVM classifier which detects bare-ground in the given region. Similarly trees are extracted using another trained SVM classifier. Once we obtain bare-grounds and trees, roads are extracted by removing the bare grounds. Structures are identified by the properties of non-ground segments. Experiments were conducted using LiDAR samples and Infrared imagery ...
Date: December 2009
Creator: Sarma, Vaibhav
Partner: UNT Libraries

Grid-based Coordinated Routing in Wireless Sensor Networks

Description: Wireless sensor networks are battery-powered ad-hoc networks in which sensor nodes that are scattered over a region connect to each other and form multi-hop networks. These nodes are equipped with sensors such as temperature sensors, pressure sensors, and light sensors and can be queried to get the corresponding values for analysis. However, since they are battery operated, care has to be taken so that these nodes use energy efficiently. One of the areas in sensor networks where an energy analysis can be done is routing. This work explores grid-based coordinated routing in wireless sensor networks and compares the energy available in the network over time for different grid sizes.
Date: December 2006
Creator: Sawant, Uttara
Partner: UNT Libraries