UNT Theses and Dissertations - 215 Matching Results

Search Results

Mediation on XQuery Views
The major goal of information integration is to provide efficient and easy-to-use access to multiple heterogeneous data sources with a single query. At the same time, one of the current trends is to use standard technologies for implementing solutions to complex software problems. In this dissertation, I used XML and XQuery as the standard technologies and have developed an extended projection algorithm to provide a solution to the information integration problem. In order to demonstrate my solution, I implemented a prototype mediation system called Omphalos based on XML related technologies. The dissertation describes the architecture of the system, its metadata, and the process it uses to answer queries. The system uses XQuery expressions (termed metaqueries) to capture complex mappings between global schemas and data source schemas. The system then applies these metaqueries in order to rewrite a user query on a virtual global database (representing the integrated view of the heterogeneous data sources) to a query (termed an outsourced query) on the real data sources. An extended XML document projection algorithm was developed to increase the efficiency of selecting the relevant subset of data from an individual data source to answer the user query. The system applies the projection algorithm to decompose an outsourced query into atomic queries which are each executed on a single data source. I also developed an algorithm to generate integrating queries, which the system uses to compose the answers from the atomic queries into a single answer to the original user query. I present a proof of both the extended XML document projection algorithm and the query integration algorithm. An analysis of the efficiency of the new extended algorithm is also presented. Finally I describe a collaborative schema-matching tool that was implemented to facilitate maintaining metadata.
Memory Management and Garbage Collection Algorithms for Java-Based Prolog
Implementing a Prolog Runtime System in a language like Java which provides its own automatic memory management and safety features such as built--in index checking and array initialization requires a consistent approach to memory management based on a simple ultimate goal: minimizing total memory management time and extra space involved. The total memory management time for Jinni is made up of garbage collection time both for Java and Jinni itself. Extra space is usually requested at Jinni's garbage collection. This goal motivates us to find a simple and practical garbage collection algorithm and implementation for our Prolog engine. In this thesis we survey various algorithms already proposed and offer our own contribution to the study of garbage collection by improvements and optimizations for some classic algorithms. We implemented these algorithms based on the dynamic array algorithm for an all--dynamic Prolog engine (JINNI 2000). The comparisons of our implementations versus the originally proposed algorithm allow us to draw informative conclusions on their theoretical complexity model and their empirical effectiveness.
A Minimally Supervised Word Sense Disambiguation Algorithm Using Syntactic Dependencies and Semantic Generalizations
Natural language is inherently ambiguous. For example, the word "bank" can mean a financial institution or a river shore. Finding the correct meaning of a word in a particular context is a task known as word sense disambiguation (WSD), which is essential for many natural language processing applications such as machine translation, information retrieval, and others. While most current WSD methods try to disambiguate a small number of words for which enough annotated examples are available, the method proposed in this thesis attempts to address all words in unrestricted text. The method is based on constraints imposed by syntactic dependencies and concept generalizations drawn from an external dictionary. The method was tested on standard benchmarks as used during the SENSEVAL-2 and SENSEVAL-3 WSD international evaluation exercises, and was found to be competitive.
Mobile agent security through multi-agent cryptographic protocols.
An increasingly promising and widespread topic of research in distributed computing is the mobile agent paradigm: code travelling and performing computations on remote hosts in an autonomous manner. One of the biggest challenges faced by this new paradigm is security. The issue of protecting sensitive code and data carried by a mobile agent against tampering from a malicious host is particularly hard but important. Based on secure multi-party computation, a recent research direction shows the feasibility of a software-only solution to this problem, which had been deemed impossible by some researchers previously. The best result prior to this dissertation is a single-agent protocol which requires the participation of a trusted third party. Our research employs multi-agent protocols to eliminate the trusted third party, resulting in a protocol with minimum trust assumptions. This dissertation presents one of the first formal definitions of secure mobile agent computation, in which the privacy and integrity of the agent code and data as well as the data provided by the host are all protected. We present secure protocols for mobile agent computation against static, semi-honest or malicious adversaries without relying on any third party or trusting any specific participant in the system. The security of our protocols is formally proven through standard proof technique and according to our formal definition of security. Our second result is a more practical agent protocol with strong security against most real-world host attacks. The security features are carefully analyzed, and the practicality is demonstrated through implementation and experimental study on a real-world mobile agent platform. All these protocols rely heavily on well-established cryptographic primitives, such as encrypted circuits, threshold decryption, and oblivious transfer. Our study of these tools yields new contributions to the general field of cryptography. Particularly, we correct a well-known construction of the encrypted circuit and give ...
Mobile-Based Smart Auscultation
In developing countries, acute respiratory infections (ARIs) are responsible for two million deaths per year. Most victims are children who are less than 5 years old. Pneumonia kills 5000 children per day. The statistics for cardiovascular diseases (CVDs) are even more alarming. According to a 2009 report from the World Health Organization (WHO), CVDs kill 17 million people per year. In many resource-poor parts of the world such as India and China, many people are unable to access cardiologists, pulmonologists, and other specialists. Hence, low skilled health professionals are responsible for screening people for ARIs and CVDs in these areas. For example, in the rural areas of the Philippines, there is only one doctor for every 10,000 people. By contrast, the United States has one doctor for every 500 Americans. Due to advances in technology, it is now possible to use a smartphone for audio recording, signal processing, and machine learning. In my thesis, I have developed an Android application named Smart Auscultation. Auscultation is a process in which physicians listen to heart and lung sounds to diagnose disorders. Cardiologists spend years mastering this skill. The Smart Auscultation application is capable of recording and classifying heart sounds, and can be used by public or clinical health workers. This application can detect abnormal heart sounds with up to 92-98% accuracy. In addition, the application can record, but not yet classify, lung sounds. This application will be able to help save thousands of lives by allowing anyone to identify abnormal heart and lung sounds.
Modeling Alcohol Consumption Using Blog Data
How do the content and writing style of people who drink alcohol beverages stand out from non-drinkers? How much information can we learn about a person's alcohol consumption behavior by reading text that they have authored? This thesis attempts to extend the methods deployed in authorship attribution and authorship profiling research into the domain of automatically identifying the human action of drinking alcohol beverages. I examine how a psycholinguistics dictionary (the Linguistics Inquiry and Word Count lexicon, developed by James Pennebaker), together with Kenneth Burke's concept of words as symbols of human action, and James Wertsch's concept of mediated action provide a framework for analyzing meaningful data patterns from the content of blogs written by consumers of alcohol beverages. The contributions of this thesis to the research field are twofold. First, I show that it is possible to automatically identify blog posts that have content related to the consumption of alcohol beverages. And second, I provide a framework and tools to model human behavior through text analysis of blog data.
Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols
Emergency Medical Dispatch Protocols are guidelines that a 9-1-1 dispatcher uses to evaluate the nature of emergency, resources to send and the nature of help provided to the 9-1-1 caller. The current Dispatch Protocols are based on voice only call. But the Next Generation 9-1-1 (NG9-1-1) architecture will allow multimedia emergency calls. In this thesis I analyze and model the Emergency Medical Dispatch Protocols for NG9-1-1 architecture. I have identified various technical aspects to improve the NG9-1-1 Dispatch Protocols. The devices (smartphone) at the caller end have advanced to a point where they can be used to send and receive video, pictures and text. There are sensors embedded in them that can be used for initial diagnosis of the injured person. There is a need to improve the human computer (smartphone) interface to take advantage of technology so that callers can easily make use of various features available to them. The dispatchers at the 9-1-1 call center can make use of these new protocols to improve the quality and the response time. They will have capability of multiple media streams to interact with the caller and the first responders.The specific contributions in this thesis include developing applications that use smartphone sensors. The CPR application uses the smartphone to help administer effective CPR even if the person is not trained. The application makes the CPR process closed loop, i.e., the person who administers the CPR as well as the 9-1-1 operator receive feedback and prompt from the application about the correctness of the CPR. The breathing application analyzes the quality of breathing of the affected person and automatically sends the information to the 9-1-1 operator. In order to improve the Human Computer Interface at the caller and the operator end, I have analyzed Fitts law and extended it so that it ...
Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations
The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to the corresponding pathogen-carrier vector to increase the specificity of the vector-borne disease has been integrated. Last, automation for requesting, retrieving, parsing, and storing specific weather data and geospatial information from federal agencies to study the differences between homogenous and heterogeneous populations has been implemented.
Modeling Complex Forest Ecology in a Parallel Computing Infrastructure
Effective stewardship of forest ecosystems make it imperative to measure, monitor, and predict the dynamic changes of forest ecology. Measuring and monitoring provides us a picture of a forest's current state and the necessary data to formulate models for prediction. However, societal and natural events alter the course of a forest's development. A simulation environment that takes into account these events will facilitate forest management. In this thesis, we describe an efficient parallel implementation of a land cover use model, Mosaic, and discuss the development efforts to incorporate spatial interaction and succession dynamics into the model. To evaluate the performance of our implementation, an extensive set of simulation experiments was carried out using a dataset representing the H.J. Andrews Forest in the Oregon Cascades. Results indicate that a significant reduction in the simulation execution time of our parallel model can be achieved as compared to uni-processor simulations.
Modeling Infectious Disease Spread Using Global Stochastic Field Simulation
Susceptibles-infectives-removals (SIR) and its derivatives are the classic mathematical models for the study of infectious diseases in epidemiology. In order to model and simulate epidemics of an infectious disease, a global stochastic field simulation paradigm (GSFS) is proposed, which incorporates geographic and demographic based interactions. The interaction measure between regions is a function of population density and geographical distance, and has been extended to include demographic and migratory constraints. The progression of diseases using GSFS is analyzed, and similar behavior to the SIR model is exhibited by GSFS, using the geographic information systems (GIS) gravity model for interactions. The limitations of the SIR and similar models of homogeneous population with uniform mixing are addressed by the GSFS model. The GSFS model is oriented to heterogeneous population, and can incorporate interactions based on geography, demography, environment and migration patterns. The progression of diseases can be modeled at higher levels of fidelity using the GSFS model, and facilitates optimal deployment of public health resources for prevention, control and surveillance of infectious diseases.
Modeling the Impact and Intervention of a Sexually Transmitted Disease: Human Papilloma Virus
Many human papilloma virus (HPV) types are sexually transmitted and HPV DNA types 16, 18, 31, and 45 account for more than 75% if all cervical dysplasia. Candidate vaccines are successfully completing US Federal Drug Agency (FDA) phase III testing and several drug companies are in licensing arbitration. Once this vaccine become available it is unlikely that 100% vaccination coverage will be probable; hence, the need for vaccination strategies that will have the greatest reduction on the endemic prevalence of HPV. This thesis introduces two discrete-time models for evaluating the effect of demographic-biased vaccination strategies: one model incorporates temporal demographics (i.e., age) in population compartments; the other non-temporal demographics (i.e., race, ethnicity). Also presented is an intuitive Web-based interface that was developed to allow the user to evaluate the effects on prevalence of a demographic-biased intervention by tailoring the model parameters to specific demographics and geographical region.
Multi-Agent Architecture for Internet Information Extraction and Visualization
The World Wide Web is one of the largest sources of information; more and more applications are being developed daily to make use of this information. This thesis presents a multi-agent architecture that deals with some of the issues related to Internet data extraction. The primary issue addresses the reliable, efficient and quick extraction of data through the use of HTTP performance monitoring agents. A second issue focuses on how to make use of available data to take decisions and alert the user when there is change in data; this is done with the help of user agents that are equipped with a Defeasible reasoning interpreter. An additional issue is the visualization of extracted data; this is done with the aid of VRML visualization agents. The cited issues are discussed using stock portfolio management as an example application.
Multi-perspective, Multi-modal Image Registration and Fusion
Multi-modal image fusion is an active research area with many civilian and military applications. Fusion is defined as strategic combination of information collected by various sensors from different locations or different types in order to obtain a better understanding of an observed scene or situation. Fusion of multi-modal images cannot be completed unless these two modalities are spatially aligned. In this research, I consider two important problems. Multi-modal, multi-perspective image registration and decision level fusion of multi-modal images. In particular, LiDAR and visual imagery. Multi-modal image registration is a difficult task due to the different semantic interpretation of features extracted from each modality. This problem is decoupled into three sub-problems. The first step is identification and extraction of common features. The second step is the determination of corresponding points. The third step consists of determining the registration transformation parameters. Traditional registration methods use low level features such as lines and corners. Using these features require an extensive optimization search in order to determine the corresponding points. Many methods use global positioning systems (GPS), and a calibrated camera in order to obtain an initial estimate of the camera parameters. The advantages of our work over the previous works are the following. First, I used high level-features, which significantly reduce the search space for the optimization process. Second, the determination of corresponding points is modeled as an assignment problem between a small numbers of objects. On the other side, fusing LiDAR and visual images is beneficial, due to the different and rich characteristics of both modalities. LiDAR data contain 3D information, while images contain visual information. Developing a fusion technique that uses the characteristics of both modalities is very important. I establish a decision-level fusion technique using manifold models.
A Multi-Time Scale Learning Mechanism for Neuromimic Processing
Learning and representing and reasoning about temporal relations, particularly causal relations, is a deep problem in artificial intelligence (AI). Learning such representations in the real world is complicated by the fact that phenomena are subject to multiple time scale influences and may operate with a strange attractor dynamic. This dissertation proposes a new computational learning mechanism, the adaptrode, which, used in a neuromimic processing architecture may help to solve some of these problems. The adaptrode is shown to emulate the dynamics of real biological synapses and represents a significant departure from the classical weighted input scheme of conventional artificial neural networks. Indeed the adaptrode is shown, by analysis of the deep structure of real synapses, to have a strong structural correspondence with the latter in terms of multi-time scale biophysical processes. Simulations of an adaptrode-based neuron and a small network of neurons are shown to have the same learning capabilities as invertebrate animals in classical conditioning. Classical conditioning is considered a fundamental learning task in animals. Furthermore, it is subject to temporal ordering constraints that fulfill the criteria of causal relations in natural systems. It may offer clues to the learning of causal relations and mechanisms for causal reasoning. The adaptrode is shown to solve an advanced problem in classical conditioning that addresses the problem of real world dynamics. A network is able to learn multiple, contrary associations that separate in time domains, that is a long-term memory can co-exist with a short-term contrary memory without destroying the former. This solves the problem of how to deal with meaningful transients while maintaining long-term memories. Possible applications of adaptrode-based neural networks are explored and suggestions for future research are made.
A Multi-Variate Analysis of SMTP Paths and Relays to Restrict Spam and Phishing Attacks in Emails
The classifier discussed in this thesis considers the path traversed by an email (instead of its content) and reputation of the relays, features inaccessible to spammers. Groups of spammers and individual behaviors of a spammer in a given domain were analyzed to yield association patterns, which were then used to identify similar spammers. Unsolicited and phishing emails were successfully isolated from legitimate emails, using analysis results. Spammers and phishers are also categorized into serial spammers/phishers, recent spammers/phishers, prospective spammers/phishers, and suspects. Legitimate emails and trusted domains are classified into socially close (family members, friends), socially distinct (strangers etc), and opt-outs (resolved false positives and false negatives). Overall this classifier resulted in far less false positives when compared to current filters like SpamAssassin, achieving a 98.65% precision, which is well comparable to the precisions achieved by SPF, DNSRBL blacklists.
Multilingual Word Sense Disambiguation Using Wikipedia
Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural languages, with a large number of the words in any given language carrying more than one meaning. Word sense disambiguation is the task of automatically assigning the most appropriate meaning to a polysemous word within a given context. Generally the problem of resolving ambiguity in literature has revolved around the famous quote “you shall know the meaning of the word by the company it keeps.” In this thesis, we investigate the role of context for resolving ambiguity through three different approaches. Instead of using a predefined monolingual sense inventory such as WordNet, we use a language-independent framework where the word senses and sense-tagged data are derived automatically from Wikipedia. Using Wikipedia as a source of sense-annotations provides the much needed solution for knowledge acquisition bottleneck. In order to evaluate the viability of Wikipedia based sense-annotations, we cast the task of disambiguating polysemous nouns as a monolingual classification task and experimented on lexical samples from four different languages (viz. English, German, Italian and Spanish). The experiments confirm that the Wikipedia based sense annotations are reliable and can be used to construct accurate monolingual sense classifiers. It is a long belief that exploiting multiple languages helps in building accurate word sense disambiguation systems. Subsequently, we developed two approaches that recast the task of disambiguating polysemous nouns as a multilingual classification task. The first approach for multilingual word sense disambiguation attempts to effectively use a machine translation system to leverage two relevant multilingual aspects of the semantics of text. First, the various senses of a target word may be translated into different words, which constitute unique, yet highly salient signal that effectively expand the target word’s feature space. Second, the translated context words themselves embed co-occurrence information ...
The Multipath Fault-Tolerant Protocol for Routing in Packet-Switched Communication Network
In order to provide improved service quality to applications, networks need to address the need for reliability of data delivery. Reliability can be improved by incorporating fault tolerance into network routing, wherein a set of multiple routes are used for routing between a given source and destination. This thesis proposes a new fault-tolerant protocol, called the Multipath Fault Tolerant Protocol for Routing (MFTPR), to improve the reliability of network routing services. The protocol is based on a multipath discovery algorithm, the Quasi-Shortest Multipath (QSMP), and is designed to work in conjunction with the routing protocol employed by the network. MFTPR improves upon the QSMP algorithm by finding more routes than QSMP, and also provides for maintenance of these routes in the event of failure of network components. In order to evaluate the resilience of a pair of paths to failure, this thesis proposes metrics that evaluate the non-disjointness of a pair of paths and measure the probability of simultaneous failure of these paths. The performance of MFTPR to find alternate routes based on these metrics is analyzed through simulation.
Multiresolutional/Fractal Compression of Still and Moving Pictures
The scope of the present dissertation is a deep lossy compression of still and moving grayscale pictures while maintaining their fidelity, with a specific goal of creating a working prototype of a software system for use in low bandwidth transmission of still satellite imagery and weather briefings with the best preservation of features considered important by the end user.
Natural Language Interfaces to Databases
Natural language interfaces to databases (NLIDB) are systems that aim to bridge the gap between the languages used by humans and computers, and automatically translate natural language sentences to database queries. This thesis proposes a novel approach to NLIDB, using graph-based models. The system starts by collecting as much information as possible from existing databases and sentences, and transforms this information into a knowledge base for the system. Given a new question, the system will use this knowledge to analyze and translate the sentence into its corresponding database query statement. The graph-based NLIDB system uses English as the natural language, a relational database model, and SQL as the formal query language. In experiments performed with natural language questions ran against a large database containing information about U.S. geography, the system showed good performance compared to the state-of-the-art in the field.
A Netcentric Scientific Research Repository
The Internet and networks in general have become essential tools for disseminating in-formation. Search engines have become the predominant means of finding information on the Web and all other data repositories, including local resources. Domain scientists regularly acquire and analyze images generated by equipment such as microscopes and cameras, resulting in complex image files that need to be managed in a convenient manner. This type of integrated environment has been recently termed a netcentric sci-entific research repository. I developed a number of data manipulation tools that allow researchers to manage their information more effectively in a netcentric environment. The specific contributions are: (1) A unique interface for management of data including files and relational databases. A wrapper for relational databases was developed so that the data can be indexed and searched using traditional search engines. This approach allows data in databases to be searched with the same interface as other data. Fur-thermore, this approach makes it easier for scientists to work with their data if they are not familiar with SQL. (2) A Web services based architecture for integrating analysis op-erations into a repository. This technique allows the system to leverage the large num-ber of existing tools by wrapping them with a Web service and registering the service with the repository. Metadata associated with Web services was enhanced to allow this feature to be included. In addition, an improved binary to text encoding scheme was de-veloped to reduce the size overhead for sending large scientific data files via XML mes-sages used in Web services. (3) Integrated image analysis operations with SQL. This technique allows for images to be stored and managed conveniently in a relational da-tabase. SQL supplemented with map algebra operations is used to select and perform operations on sets of images.
Network Security Tool for a Novice
Network security is a complex field that is handled by security professionals who need certain expertise and experience to configure security systems. With the ever increasing size of the networks, managing them is going to be a daunting task. What kind of solution can be used to generate effective security configurations by both security professionals and nonprofessionals alike? In this thesis, a web tool is developed to simplify the process of configuring security systems by translating direct human language input into meaningful, working security rules. These human language inputs yield the security rules that the individual wants to implement in their network. The human language input can be as simple as, "Block Facebook to my son's PC". This tool will translate these inputs into specific security rules and install the translated rules into security equipment such as virtualized Cisco FWSM network firewall, Netfilter host-based firewall, and Snort Network Intrusion Detection. This tool is implemented and tested in both a traditional network and a cloud environment. One thousand input policies were collected from various users such as staff from UNT departments' and health science, including individuals with network security background as well as students with a non-computer science background to analyze the tool's performance. The tool is tested for its accuracy (91%) in generating a security rule. It is also tested for accuracy of the translated rule (86%) compared to a standard rule written by security professionals. Nevertheless, the network security tool built has shown promise to both experienced and inexperienced people in network security field by simplifying the provisioning process to result in accurate and effective network security rules.
The Object-Oriented Database Editor
Because of an interest in object-oriented database systems, designers have created systems to store and manipulate specific sets of abstract data types that belong to the real world environment they represent. Unfortunately, the advantage of these systems is also a disadvantage since no single object-oriented database system can be used for all applications. This paper describes an object-oriented database management system called the Object-oriented Database Editor (ODE) which overcomes this disadvantage by allowing designers to create and execute an object-oriented database that represents any type of environment and then to store it and simulate that environment. As conditions within the environment change, the designer can use ODE to alter that environment without loss of data. ODE provides a flexible environment for the user; it is efficient; and it can run on a personal computer.
Object Recognition Using Scale-Invariant Chordiogram
This thesis describes an approach for object recognition using the chordiogram shape-based descriptor. Global shape representations are highly susceptible to clutter generated due to the background or other irrelevant objects in real-world images. To overcome the problem, we aim to extract precise object shape using superpixel segmentation, perceptual grouping, and connected components. The employed shape descriptor chordiogram is based on geometric relationships of chords generated from the pairs of boundary points of an object. The chordiogram descriptor applies holistic properties of the shape and also proven suitable for object detection and digit recognition mechanisms. Additionally, it is translation invariant and robust to shape deformations. In spite of such excellent properties, chordiogram is not scale-invariant. To this end, we propose scale invariant chordiogram descriptors and intend to achieve a similar performance before and after applying scale invariance. Our experiments show that we achieve similar performance with and without scale invariance for silhouettes and real world object images. We also show experiments at different scales to confirm that we obtain scale invariance for chordiogram.
Optimal Access Point Selection and Channel Assignment in IEEE 802.11 Networks
Designing 802.11 wireless networks includes two major components: selection of access points (APs) in the demand areas and assignment of radio frequencies to each AP. Coverage and capacity are some key issues when placing APs in a demand area. APs need to cover all users. A user is considered covered if the power received from its corresponding AP is greater than a given threshold. Moreover, from a capacity standpoint, APs need to provide certain minimum bandwidth to users located in the coverage area. A major challenge in designing wireless networks is the frequency assignment problem. The 802.11 wireless LANs operate in the unlicensed ISM frequency, and all APs share the same frequency. As a result, as 802.11 APs become widely deployed, they start to interfere with each other and degrade network throughput. In consequence, efficient assignment of channels becomes necessary to avoid and minimize interference. In this work, an optimal AP selection was developed by balancing traffic load. An optimization problem was formulated that minimizes heavy congestion. As a result, APs in wireless LANs will have well distributed traffic loads, which maximize the throughput of the network. The channel assignment algorithm was designed by minimizing channel interference between APs. The optimization algorithm assigns channels in such a way that minimizes co-channel and adjacent channel interference resulting in higher throughput.
Optimizing Non-pharmaceutical Interventions Using Multi-coaffiliation Networks
Computational modeling is of fundamental significance in mapping possible disease spread, and designing strategies for its mitigation. Conventional contact networks implement the simulation of interactions as random occurrences, presenting public health bodies with a difficult trade off between a realistic model granularity and robust design of intervention strategies. Recently, researchers have been investigating the use of agent-based models (ABMs) to embrace the complexity of real world interactions. At the same time, theoretical approaches provide epidemiologists with general optimization models in which demographics are intrinsically simplified. The emerging study of affiliation networks and co-affiliation networks provide an alternative to such trade off. Co-affiliation networks maintain the realism innate to ABMs while reducing the complexity of contact networks into distinctively smaller k-partite graphs, were each partition represent a dimension of the social model. This dissertation studies the optimization of intervention strategies for infectious diseases, mainly distributed in school systems. First, concepts of synthetic populations and affiliation networks are extended to propose a modified algorithm for the synthetic reconstruction of populations. Second, the definition of multi-coaffiliation networks is presented as the main social model in which risk is quantified and evaluated, thereby obtaining vulnerability indications for each school in the system. Finally, maximization of the mitigation coverage and minimization of the overall cost of intervention strategies are proposed and compared, based on centrality measures.
A Parallel Programming Language
The problem of programming a parallel processor is discussed. Previous methods of programming a parallel processor, analyzing a program for parallel paths, and special language features are discussed. Graph theory is used to define the three basic programming constructs: choice, sequence, repetition. The concept of mechanized programming is expanded to allow for total separation of control and computational sections of a program. A definition of a language is presented which provides for this separation. A method for developing the program graph is discussed. The control graph and data graph are developed separately. The two graphs illustrate control and data predecessor relationships used in determining parallel elements of a program.
Performance Analysis of Wireless Networks with QoS Adaptations
The explosive demand for multimedia and fast transmission of continuous media on wireless networks means the simultaneous existence of traffic requiring different qualities of service (QoS). In this thesis, several efficient algorithms have been developed which offer several QoS to the end-user. We first look at a request TDMA/CDMA protocol for supporting wireless multimedia traffic, where CDMA is laid over TDMA. Then we look at a hybrid push-pull algorithm for wireless networks, and present a generalized performance analysis of the proposed protocol. Some of the QoS factors considered include customer retrial rates due to user impatience and system timeouts and different levels of priority and weights for mobile hosts. We have also looked at how customer impatience and system timeouts affect the QoS provided by several queuing and scheduling schemes such as FIFO, priority, weighted fair queuing, and the application of the stretch-optimal algorithm to scheduling.
Performance comparison of data distribution management strategies in large-scale distributed simulation.
Data distribution management (DDM) is a High Level Architecture/Run-time Infrastructure (HLA/RTI) service that manages the distribution of state updates and interaction information in large-scale distributed simulations. The key to efficient DDM is to limit and control the volume of data exchanged during the simulation, to relay data to only those hosts requiring the data. This thesis focuses upon different DDM implementations and strategies. This thesis includes analysis of three DDM methods including the fixed grid-based, dynamic grid-based, and region-based methods. Also included is the use of multi-resolution modeling with various DDM strategies and analysis of the performance effects of aggregation/disaggregation with these strategies. Running numerous federation executions, I simulate four different scenarios on a cluster of workstations with a mini-RTI Kit framework and propose a set of benchmarks for a comparison of the DDM schemes. The goals of this work are to determine the most efficient model for applying each DDM scheme, discover the limitations of the scalability of the various DDM methods, evaluate the effects of aggregation/disaggregation on performance and resource usage, and present accepted benchmarks for use in future research.
Performance Engineering of Software Web Services and Distributed Software Systems
The promise of service oriented computing, and the availability of Web services promote the delivery and creation of new services based on existing services, in order to meet new demands and new markets. As Web and internet based services move into Clouds, inter-dependency of services and their complexity will increase substantially. There are standards and frameworks for specifying and composing Web Services based on functional properties. However, mechanisms to individually address non-functional properties of services and their compositions have not been well established. Furthermore, the Cloud ontology depicts service layers from a high-level, such as Application and Software, to a low-level, such as Infrastructure and Platform. Each component that resides in one layer can be useful to another layer as a service. It hints at the amount of complexity resulting from not only horizontal but also vertical integrations in building and deploying a composite service. To meet the requirements and facilitate using Web services, we first propose a WSDL extension to permit specification of non-functional or Quality of Service (QoS) properties. On top of the foundation, the QoS-aware framework is established to adapt publicly available tools for Web services, augmented by ontology management tools, along with tools for performance modeling to exemplify how the non-functional properties such as response time, throughput, or utilization of services can be addressed in the service acquisition and composition process. To facilitate Web service composition standards, in this work we extended the framework with additional qualitative information to the service descriptions using Business Process Execution Language (BPEL). Engineers can use BPEL to explore design options, and have the QoS properties analyzed for the composite service. The main issue in our research is performance evaluation in software system and engineering. We researched the Web service computation as the first half of this dissertation, and performance antipattern ...
Performance Evaluation of Data Integrity Mechanisms for Mobile Agents
With the growing popularity of e-commerce applications that use software agents, the protection of mobile agent data has become imperative. To that end, the performance of four methods that protect the data integrity of mobile agents is evaluated. The methods investigated include existing approaches known as the Partial Result Authentication Codes, Hash Chaining, and Set Authentication Code methods, and a technique of our own design, called the Modified Set Authentication Code method, which addresses the limitations of the Set Authentication Code method. The experiments were run using the DADS agent system (developed at the Network Research Laboratory at UNT), for which a Data Integrity Module was designed. The experimental results show that our Modified Set Authentication Code technique performed comparably to the Set Authentication Code method.
Planning techniques for agent based 3D animations.
The design of autonomous agents capable of performing a given goal in a 3D domain continues to be a challenge for computer animated story generation systems. We present a novel prototype which consists of a 3D engine and a planner for a simple virtual world. We incorporate the 2D planner into the 3D engine to provide 3D animations. Based on the plan, the 3D world is created and the objects are positioned. Then the plan is linearized into simpler actions for object animation and rendered via the 3D engine. We use JINNI3D as the engine and WARPLAN-C as the planner for the above-mentioned prototype. The user can interact with the system using a simple natural language interface. The interface consists of a shallow parser, which is capable of identifying a set of predefined basic commands. The command given by the user is considered as the goal for the planner. The resulting plan is created and rendered in 3D. The overall system is comparable to a character based interactive story generation system except that it is limited to the predefined 3D environment.
Power-benefit analysis of erasure encoding with redundant routing in sensor networks.
One of the problems sensor networks face is adversaries corrupting nodes along the path to the base station. One way to reduce the effect of these attacks is multipath routing. This introduces some intrusion-tolerance in the network by way of redundancy but at the cost of a higher power consumption by the sensor nodes. Erasure coding can be applied to this scenario in which the base station can receive a subset of the total data sent and reconstruct the entire message packet at its end. This thesis uses two commonly used encodings and compares their performance with respect to power consumed for unencoded data in multipath routing. It is found that using encoding with multipath routing reduces the power consumption and at the same time enables the user to send reasonably large data sizes. The experiments in this thesis were performed on the Tiny OS platform with the simulations done in TOSSIM and the power measurements were taken in PowerTOSSIM. They were performed on the simple radio model and the lossy radio model provided by Tiny OS. The lossy radio model was simulated with distances of 10 feet, 15 feet and 20 feet between nodes. It was found that by using erasure encoding, double or triple the data size can be sent at the same power consumption rate as unencoded data. All the experiments were performed with the radio set at a normal transmit power, and later a high transmit power.
Practical Cursive Script Recognition
This research focused on the off-line cursive script recognition application. The problem is very large and difficult and there is much room for improvement in every aspect of the problem. Many different aspects of this problem were explored in pursuit of solutions to create a more practical and usable off-line cursive script recognizer than is currently available.
Practical Parallel Processing
The physical limitations of uniprocessors and the real-time requirements of numerous practical applications have made parallel processing an essential technology in military, industry and scientific research. In this dissertation, we investigate parallelizations of three practical applications using three parallel machine models. The algorithms are: Finitely inductive (FI) sequence processing is a pattern recognition technique used in many fields. We first propose four parallel FI algorithms on the EREW PRAM. The time complexity of the parallel factoring and following by bucket packing is O(sk^2 n/p), and they are optimal under some conditions. The parallel factoring and following by hashing requires O(sk^2 n/p) time when uniform hash functions are used and log(p) ≤ k n/p and pm ≈ n. Their speedup is proportional to the number processors used. For these results, s is the number of levels, k is the size of the antecedents and n is the length of the input sequence and p is the number of processors. We also describe algorithms for raster/vector conversion based on the scan model to handle block-like connected components of arbitrary geometrical shapes with multi-level nested dough nuts for the IES (image exploitation system). Both the parallel raster-to-vector algorithm and parallel vector-to-raster algorithm require O(log(n2)) or O(log2(n2)) time (depending on the sorting algorithms used) for images of size n2 using p = n2 processors. Not only is the DWT (discrete wavelet transforms) useful in data compression, but also has it potentials in signal processing, image processing, and graphics. Therefore, it is of great importance to investigate efficient parallelizations of the wavelet transforms. The time complexity of the parallel forward DWT on the parallel virtual machine with linear processor organization is O(((so+s1)mn)/p), where s0 and s1 are the lengths of the filters and p is the number of processors used. The time complexity of the ...
Privacy Management for Online Social Networks
One in seven people in the world use online social networking for a variety of purposes -- to keep in touch with friends and family, to share special occasions, to broadcast announcements, and more. The majority of society has been bought into this new era of communication technology, which allows everyone on the internet to share information with friends. Since social networking has rapidly become a main form of communication, holes in privacy have become apparent. It has come to the point that the whole concept of sharing information requires restructuring. No longer are online social networks simply technology available for a niche market; they are in use by all of society. Thus it is important to not forget that a sense of privacy is inherent as an evolutionary by-product of social intelligence. In any context of society, privacy needs to be a part of the system in order to help users protect themselves from others. This dissertation attempts to address the lack of privacy management in online social networks by designing models which understand the social science behind how we form social groups and share information with each other. Social relationship strength was modeled using activity patterns, vocabulary usage, and behavioral patterns. In addition, automatic configuration for default privacy settings was proposed to help prevent new users from leaking personal information. This dissertation aims to mobilize a new era of social networking that understands social aspects of human network, and uses that knowledge to honor users' privacy.
Privacy Preserving EEG-based Authentication Using Perceptual Hashing
The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing can prevent information leakage.
Procedural content creation and technologies for 3D graphics applications and games.
The recent transformation of consumer graphics (CG) cards into powerful 3D rendering processors is due in large measure to the success of game developers in delivering mass market entertainment software that feature highly immersive and captivating virtual environments. Despite this success, 3D CG application development is becoming increasingly handicapped by the inability of traditional content creation methods to keep up with the demand for content. The term content is used here to refer to any data operated on by application code that is meant for viewing, including 3D models, textures, animation sequences and maps or other data-intensive descriptions of virtual environments. Traditionally, content has been handcrafted by humans. A serious problem facing the interactive graphics software development community is how to increase the rate at which content can be produced to keep up with the increasingly rapid pace at which software for interactive applications can now be developed. Research addressing this problem centers around procedural content creation systems. By moving away from purely human content creation toward systems in which humans play a substantially less time-intensive but no less creative part in the process, procedural content creation opens new doors. From a qualitative standpoint, these types of systems will not rely less on human intervention but rather more since they will depend heavily on direction from a human in order to synthesize the desired content. This research draws heavily from the entertainment software domain but the research is broadly relevant to 3D graphics applications in general.
A Programming Language For Concurrent Processing
This thesis is a proposed solution to the problem of including an effective interrupt mechanism in the set of concurrent- processing primitives of a block-structured programming language or system. The proposed solution is presented in the form of a programming language definition and model. The language is called TRIPLE.
Qos Aware Service Oriented Architecture
Service-oriented architecture enables web services to operate in a loosely-coupled setting and provides an environment for dynamic discovery and use of services over a network using standards such as WSDL, SOAP, and UDDI. Web service has both functional and non-functional characteristics. This thesis work proposes to add QoS descriptions (non-functional properties) to WSDL and compose various services to form a business process. This composition of web services also considers QoS properties along with functional properties and the composed services can again be published as a new Web Service and can be part of any other composition using Composed WSDL.
Quantifying Design Principles in Reusable Software Components
Software reuse can occur in various places during the software development cycle. Reuse of existing source code is the most commonly practiced form of software reuse. One of the key requirements for software reuse is readability, thus the interest in the use of data abstraction, inheritance, modularity, and aspects of the visible portion of module specifications. This research analyzed the contents of software reuse libraries to answer the basic question of what makes a good reusable software component. The approach taken was to measure and analyze various software metrics as mapped to design characteristics. A related research question investigated the change in the design principles over time. This was measured by comparing sets of Ada reuse libraries categorized into two time periods. It was discovered that recently developed Ada reuse components scored better on readability than earlier developed components. A benefit of this research has been the development of a set of "design for reuse" guidelines. These guidelines address coding practices as well as design principles for an Ada implementation. C++ software reuse libraries were also analyzed to determine if design principles can be applied in a language independent fashion. This research used cyclomatic complexity metrics, software science metrics, and traditional static code metrics to measure design features. This research provides at least three original contributions. First it collects empirical data about existing reuse libraries. Second, it develops a readability measure for software libraries which can aid in comparing libraries. And third, this research developed a set of coding and design guidelines for developers of reusable software. Future research can investigate how design principles for C++ change over time. Another topic for research is the investigation of systems employing reused components to determine which libraries are more successfully used than others.
Radium: Secure Policy Engine in Hypervisor
The basis of today’s security systems is the trust and confidence that the system will behave as expected and are in a known good trusted state. The trust is built from hardware and software elements that generates a chain of trust that originates from a trusted known entity. Leveraging hardware, software and a mandatory access control policy technology is needed to create a trusted measurement environment. Employing a control layer (hypervisor or microkernel) with the ability to enforce a fine grained access control policy with hyper call granularity across multiple guest virtual domains can ensure that any malicious environment to be contained. In my research, I propose the use of radium's Asynchronous Root of Trust Measurement (ARTM) capability incorporated with a secure mandatory access control policy engine that would mitigate the limitations of the current hardware TPM solutions. By employing ARTM we can leverage asynchronous use of boot, launch, and use with the hypervisor proving its state and the integrity of the secure policy. My solution is using Radium (Race free on demand integrity architecture) architecture that will allow a more detailed measurement of applications at run time with greater semantic knowledge of the measured environments. Radium incorporation of a secure access control policy engine will give it the ability to limit or empower a virtual domain system. It can also enable the creation of a service oriented model of guest virtual domains that have the ability to perform certain operations such as introspecting other virtual domain systems to determine the integrity or system state and report it to a remote entity.
Rapid Prototyping and Design of a Fast Random Number Generator
Information in the form of online multimedia, bank accounts, or password usage for diverse applications needs some form of security. the core feature of many security systems is the generation of true random or pseudorandom numbers. Hence reliable generators of such numbers are indispensable. the fundamental hurdle is that digital computers cannot generate truly random numbers because the states and transitions of digital systems are well understood and predictable. Nothing in a digital computer happens truly randomly. Digital computers are sequential machines that perform a current state and move to the next state in a deterministic fashion. to generate any secure hash or encrypted word a random number is needed. But since computers are not random, random sequences are commonly used. Random sequences are algorithms that generate a pattern of values that appear to be random but after some time start repeating. This thesis implements a digital random number generator using MATLAB, FGPA prototyping, and custom silicon design. This random number generator is able to use a truly random CMOS source to generate the random number. Statistical benchmarks are used to test the results and to show that the design works. Thus the proposed random number generator will be useful for online encryption and security.
Rapid Prototyping and Design of a Fast Random Number Generator
Information in the form of online multimedia, bank accounts, or password usage for diverse applications needs some form of security. the core feature of many security systems is the generation of true random or pseudorandom numbers. Hence reliable generators of such numbers are indispensable. the fundamental hurdle is that digital computers cannot generate truly random numbers because the states and transitions of digital systems are well understood and predictable. Nothing in a digital computer happens truly randomly. Digital computers are sequential machines that perform a current state and move to the next state in a deterministic fashion. to generate any secure hash or encrypted word a random number is needed. But since computers are not random, random sequences are commonly used. Random sequences are algorithms that generate a pattern of values that appear to be random but after some time start repeating. This thesis implements a digital random number generator using MATLAB, FGPA prototyping, and custom silicon design. This random number generator is able to use a truly random CMOS source to generate the random number. Statistical benchmarks are used to test the results and to show that the design works. Thus the proposed random number generator will be useful for online encryption and security.
Real-time Rendering of Burning Objects in Video Games
In recent years there has been growing interest in limitless realism in computer graphics applications. Among those, my foremost concentration falls into the complex physical simulations and modeling with diverse applications for the gaming industry. Different simulations have been virtually successful by replicating the details of physical process. As a result, some were strong enough to lure the user into believable virtual worlds that could destroy any sense of attendance. In this research, I focus on fire simulations and its deformation process towards various virtual objects. In most game engines model loading takes place at the beginning of the game or when the game is transitioning between levels. Game models are stored in large data structures. Since changing or adjusting a large data structure while the game is proceeding may adversely affect the performance of the game. Therefore, developers may choose to avoid procedural simulations to save resources and avoid interruptions on performance. I introduce a process to implement a real-time model deformation while maintaining performance. It is a challenging task to achieve high quality simulation while utilizing minimum resources to represent multiple events in timely manner. Especially in video games, this overwhelming criterion would be robust enough to sustain the engaging player's willing suspension of disbelief. I have implemented and tested my method on a relatively modest GPU using CUDA. My experiments conclude this method gives a believable visual effect while using small fraction of CPU and GPU resources.
Recognition of Face Images
The focus of this dissertation is a methodology that enables computer systems to classify different up-front images of human faces as belonging to one of the individuals to which the system has been exposed previously. The images can present variance in size, location of the face, orientation, facial expressions, and overall illumination. The approach to the problem taken in this dissertation can be classified as analytic as the shapes of individual features of human faces are examined separately, as opposed to holistic approaches to face recognition. The outline of the features is used to construct signature functions. These functions are then magnitude-, period-, and phase-normalized to form a translation-, size-, and rotation-invariant representation of the features. Vectors of a limited number of the Fourier decomposition coefficients of these functions are taken to form the feature vectors representing the features in the corresponding vector space. With this approach no computation is necessary to enforce the translational, size, and rotational invariance at the stage of recognition thus reducing the problem of recognition to the k-dimensional clustering problem. A recognizer is specified that can reliably classify the vectors of the feature space into object classes. The recognizer made use of the following principle: a trial vector is classified into a class with the greatest number of closest vectors (in the sense of the Euclidean distance) among all vectors representing the same feature in the database of known individuals. A system based on this methodology is implemented and tried on a set of 50 pictures of 10 individuals (5 pictures per individual). The recognition rate is comparable to that of most recent results in the area of face recognition. The methodology presented in this dissertation is also applicable to any problem of pattern recognition where patterns can be represented as a collection of black ...
Resource Allocation in Mobile and Wireless Networks
The resources (memory, power and bandwidth) are limited in wireless and mobile networks. Previous research has shown that the quality of service (QoS) of the mobile client can be improved through efficient resources management. This thesis contains two areas of research that are strongly interrelated. In the first area of research, we extended the MoSync Algorithm, a network application layer media synchronization algorithm, to allow play-out of multimedia packets by the base station upon the mobile client in a First-In-First-Out (FIFO), Highest-Priority-First (PQ), Weighted Fair-Queuing (WFQ) and Round-Robin (RR) order. In the second area of research, we make modifications to the DSR and TORA routing algorithms to make them energy aware routing protocols. Our research shows that the QoS of the mobile client can be drastically improved through effective resource allocation.
Resource Efficient and Scalable Routing using Intelligent Mobile Agents
Many of the contemporary routing algorithms use simple mechanisms such as flooding or broadcasting to disseminate the routing information available to them. Such routing algorithms cause significant network resource overhead due to the large number of messages generated at each host/router throughout the route update process. Many of these messages are wasteful since they do not contribute to the route discovery process. Reducing the resource overhead may allow for several algorithms to be deployed in a wide range of networks (wireless and ad-hoc) which require a simple routing protocol due to limited availability of resources (memory and bandwidth). Motivated by the need to reduce the resource overhead associated with routing algorithms a new implementation of distance vector routing algorithm using an agent-based paradigm known as Agent-based Distance Vector Routing (ADVR) has been proposed. In ADVR, the ability of route discovery and message passing shifts from the nodes to individual agents that traverse the network, co-ordinate with each other and successively update the routing tables of the nodes they visit.
Rhythms of Interaction in Global Software Development Teams
Researchers have speculated that global software teams have activity patterns that are dictated by work-place schedules or a client's need. Similar patterns have been suggested for individuals enrolled in distant learning projects that require students to post feedback in response to questions or assignments. Researchers tend to accept the notion that students' temporal patterns adjust to academic or social calendars and are a result of choices made within these constraints. Although there is some evidence that culture do have an impact on communication activity behavior, there is not a clear how each of these factors may relate to work done in online groups. This particular study represents a new approach to studying student-group communication activities and also pursues an alternative approach by using activity data from students participating in a global software development project to generate a variety of complex measures that capture patterns about when students work. Students work habits are also often determined by where they live and what they are working on. Moreover, students tend to work on group projects in cycles, which correspond to a start, middle, and end time period. Knowledge obtained from this study should provide insight into current empirical research on global software development by defining the different time variables that can also be used to compare temporal patterns found in real-world teams. It should also inform studies about student team projects by helping instructors schedule group activities.
The Role of Intelligent Mobile Agents in Network Management and Routing
In this research, the application of intelligent mobile agents to the management of distributed network environments is investigated. Intelligent mobile agents are programs which can move about network systems in a deterministic manner in carrying their execution state. These agents can be considered an application of distributed artificial intelligence where the (usually small) agent code is moved to the data and executed locally. The mobile agent paradigm offers potential advantages over many conventional mechanisms which move (often large) data to the code, thereby wasting available network bandwidth. The performance of agents in network routing and knowledge acquisition has been investigated and simulated. A working mobile agent system has also been designed and implemented in JDK 1.2.
Rollback Reduction Techniques Through Load Balancing in Optimistic Parallel Discrete Event Simulation
Discrete event simulation is an important tool for modeling and analysis. Some of the simulation applications such as telecommunication network performance, VLSI logic circuits design, battlefield simulation, require enormous amount of computing resources. One way to satisfy this demand for computing power is to decompose the simulation system into several logical processes (Ip) and run them concurrently. In any parallel discrete event simulation (PDES) system, the events are ordered according to their time of occurrence. In order for the simulation to be correct, this ordering has to be preserved. There are three approaches to maintain this ordering. In a conservative system, no lp executes an event unless it is certain that all events with earlier time-stamps have been executed. Such systems are prone to deadlock. In an optimistic system on the other hand, simulation progresses disregarding this ordering and saves the system states regularly. Whenever a causality violation is detected, the system rolls back to a state saved earlier and restarts processing after correcting the error. There is another approach in which all the lps participate in the computation of a safe time-window and all events with time-stamps within this window are processed concurrently. In optimistic simulation systems, there is a global virtual time (GVT), which is the minimum of the time-stamps of all the events existing in the system. The system can not rollback to a state prior to GVT and hence all such states can be discarded. GVT is used for memory management, load balancing, termination detection and committing of events. However, GVT computation introduces additional overhead. In optimistic systems, large number of rollbacks can degrade the system performance considerably. We have studied the effect of load balancing in reducing the number of rollbacks in such systems. We have designed three load balancing algorithms and implemented two of ...