UNT Theses and Dissertations - Browse

ABOUT BROWSE FEED

Expulsion of Carriers from the Double-Barrier Quantum Well and Investigation of Its Spectral and Transport Consequences

Description: In this work I investigate the expulsion of carriers from nanostructures using the double-barrier quantum well (DBQW) as an example and discuss manifestations of this effect in the spectrum of the DBQW in absence of bias, and in the tunneling current in presence of bias. Assuming equality of the Fermi energy in all regions of the considered system, I compute the relative density of carriers localized in the DBQW and conclude that a fraction of carriers is expelled from this nanostructure.
Date: March 1992
Creator: Chyla, Wojciech Tadeusz
Partner: UNT Libraries

L-Shell X-Ray Production Cross Sections for ₂₀Ca, ₂₆Fe, ₂₈Ni, ₂₉Cu, ₃₀Zn, ₃₁Ga, and ₃₂Ge by Hydrogen, Helium, and Lithium Ions

Description: L-shell x-ray production cross sections are presented for Fe, Ni, Cu, Zn, Ga, and Ge by 0.5- to 5.0-MeV protons and by 0.5- to 8.0-MeV helium ions and Ca, Fe, Ni, Cu, and Ge by 0.75- to 4.5-MeV lithium ions. These measurements are compared to the first Born theory and the perturbed-stationary- state theory with energy-loss, Coulomb deflection, and relativistic corrections (ECPSSR). The results are also compared to previous experimental investigations. The high precision x-ray measurements were performed with a windowless Si(Li) detector. The efficiency of the detector was determined by the use of thin target atomic-field bremsstrahlung produced by 66.5 keV electrons. The measured bremsstrahlung spectra were compared to theoretical bremsstrahlung distributions in order to obtain an efficiency versus energy curve. The targets for the measurement were manufactured by the vacuum evaporation of the target element onto thin foils of carbon. Impurities in the carbon caused interferences inthe L-shell x-ray peaks. Special cleansing procedures were developed that reduced the impurity concentrations in the carbon foil, making the use of less than 5 μg/cm^2 targets possible. The first Born theory is seen to greatly overpredict the data at low ion energies. The ECPSSR theory matches the data very well at the high energy region. At low energies, while fitting the data much more closely than the first Born theory, the ECPSSR theory does not accurately predict the trend of the data. This is probably due to the onset of molecular-orbital effects, a mechanism not accounted for in the ECPSSR theory.
Date: May 1992
Creator: McNeir, Michael Ridge
Partner: UNT Libraries

Synchronous Chaos, Chaotic Walks, and Characterization of Chaotic States by Lyapunov Spectra

Description: Four aspects of the dynamics of continuous-time dynamical systems are studied in this work. The relationship between the Lyapunov exponents of the original system and the Lyapunov exponents of induced Poincare maps is examined. The behavior of these Poincare maps as discriminators of chaos from noise is explored, and the possible Poissonian statistics generated at rarely visited surfaces are studied.
Date: August 1993
Creator: Albert, Gerald (Gerald Lachian)
Partner: UNT Libraries

An Experimental Study of Collision Broadening of some Excited Rotational States of the Bending Vibration of Methyl Cyanide

Description: A double modulation microwave spectrometer is used to evaluate the linewidth parameters for some excited rotational components in the bending vibration v_8 of 13CH3 13C 15N and 13CH3C15N isotopomers of methyl cyanide. The linewidth parameters for self-broadening of the ΔJ=2←1 rotational components for the ground v_8 , 1v_8, and the 2v_8 vibrations were determined over a pressure range of 1 to 13 mtorr and at a temperature of 300 K. The double modulation technique is used to explore the high eighth derivative of the line shape profile of the spectral line. This technique proved to give good signal-to-noise ratios and enabled the recovery of weak signals. An experimental method is developed to correct for source modulation broadening. The tests of the ratios of the two inner peak's separation of the eighth derivative of the line showed that they were up to 95% similar to those for a Lorentzian line shape function. The line shapes were assumed to be Lorentzian for the theoretical analysis of the derivative profiles and comparisons were made between experiment and theory on this basis. Dipole moments for vibrationally excited states were calculated from linewidth parameters and show systematic decrease with the increase of excitation. Impact parameters were calculated using the "hard sphere" model of the kinetic theory of gases. The results were many times larger than the size of the molecule itself. This suggests that the dominant interaction is a long range dipole-dipole force interaction.
Date: May 1993
Creator: Hajsaleh, Jamal Y. (Jamal Yousef)
Partner: UNT Libraries

Diffusion Kinetics and Microstructure of Eutectic and Composite Solder/Copper Joints

Description: Sn/Pb solders are widely used by the electronics industry to provide both mechanical and electrical interconnections between electronic components and printed circuit boards. Solders with enhanced mechanical properties are required for high reliability for Surface Mount Technology (SMT) applications. One approach to improve the mechanical properties of solder is to add metallic or intermetallic particles to eutectic 63Sn/37Pb solder to form composite solders. Cu6Sn5 and Cu3Sn form and grow at the solder/copper substrate interface. The formation and growth of these intermetallics have been proposed as controlling mechanisms for solderability and reliability of solder/copper joints. The goal of this study was to investigate the diffusion kinetics and microstructures of six types of composite solder/copper joints.
Date: May 1994
Creator: Wu, Yujing
Partner: UNT Libraries

Nonlinear Dynamics of Semiconductor Device Circuits and Characterization of Deep Energy Levels in HgCdTe by Using Magneto-Optical Spectroscopy

Description: The nonlinear dynamics of three physical systems has been investigated. Diode resonator systems are experimentally shown to display a period doubling route to chaos, quasiperiodic states, periodic locking states, and Hopf bifurcation to chaos. Particularly, the transition from quasiperiodic states to chaos in line-coupled systems agrees well with the Curry-Yorke model. The SPICE program has been modified to give realistic models for the diode resonator systems.
Date: May 1994
Creator: Yü, Chi
Partner: UNT Libraries

Transport Processes in Synchrotrons

Description: This thesis examines the evolution of beams in synchrotrons. Following an introduction to accelerator physics in Chapter 1, in Chapter 2 I describe the Fermilab E778 'diffusion' experiment. Families of sextupoles were powered to drive the 2/5 resonance, and a beam was then kicked to populate a nonlinear region of the transverse phase space. The beam was then observed over periods of approximately 30 minutes for a variety of kick amplitudes and physical apertures. In Chapter 3 comments about the analytic treatment of such systems are discussed, including the assumptions inherent in the conventional treatment. I motivate my use of a simplified model in Chapter 4 after examining common computational methods. Deriving the model from the formalism of traditional accelerator physics, I discuss its implementation on a massively parallel computer, the Intel iPSC/860 hypercube, and examine the performance of this algorithm in detail. Using the simple model to perform the numerical experiment equivalent to E778 is the subject of Chapter 5. I derive the parameters needed for the simple model based upon the physical experiment. Both three dimensional cases and cases with reduced dimensionality are run. From power supply ripple data and an electrical model of the magnet string, I compute tune modulation depths, and a subset of these are run. I conclude that tune modulation from power supply ripple is not a significant source of transport for this system. In Chapter 6, the intensities of the beams are used to compare the experimental and numerical runs, using both exponential and algebraic decays, and the algebraic form is seen to provide a better fit. The agreement between numerical and experimental results is best for fully three-dimensional runs, but the numerical results show slower decay than the experimental. Individual particles are examined, whose motion consists of stochastic motion interspersed with regular ...
Date: May 1994
Creator: Cole, Benjamin H. (Benjamin Holland)
Partner: UNT Libraries

Nonlinear Optical Absorption and Refraction Study of Metallophthalocyanine Dyes

Description: This dissertation deals with the characterization of the nonlinear absorption and refraction of two representative metallophthalocyanine dyes: chloro aluminum phthalocyanine dissolved in methanol, referred to as CAP, and a silicon naphthalocyanine derivative dissolved in toluene, referred to as SiNc. Using the Z-scan technique, the experiments are performed on both the picosecond and nanosecond timescales at a wavelength of 0.532 μm.
Date: December 1992
Creator: Wei, Tai-Huei
Partner: UNT Libraries

An Investigation for Gamma Rays Resulting from the Bombardment of As75 with 14 Mev Neutrons

Description: It is the purpose of this paper to set forth the method and results of studying the gamma rays resulting from the bombardment of As75 with approximately 14 Mev neutrons. The source of these neutrons was the H3(d,n)He4 reaction. The deuterons of 325 Kev energy were obtained from a Van de Graff electrostatic accelerator. A NaI scintillation spectrometer was used to determine the gamma-ray energies.
Date: 1957
Creator: Givens, Wyatt Wendell
Partner: UNT Libraries

Coherent Resonant Interaction and Harmonic Generation in Atomic Vapors

Description: This work examines the use of higher order multiphoton resonances in higher harmonic generation together with judicious exploitation of coherent interaction properties to achieve efficient harmonic generation. A detailed experimental study on third harmonic generation in two photon resonant coherent interaction and a theoretical study on four photon resonant coherent interaction have been conducted. Two photon resonant coheren propagation in lithium vapor (2S-4S and 2S-3D interaction) has been studied in detail as a function of phase and delay of the interacting pulse sequence. Under coherent lossless propagation of 90 phase shifted pulse pair, third harmonic generation is enhanced. A maximum energy conversion efficiency of 1% was measured experimentally. This experiment shows that phase correlated pulse sequence can be used to control multiphoton coherent resonant effects. A larger two photon resonant enhancement does not result in more efficient harmonic generation, in agreement with the theoretical prediction. An accurate (to at least 0.5 A°) measurement of intensity dependent Stark shift has been done with the newly developed "interferometric wavemeter." Stark shifts as big as several pulse bandwidths (of picosecond pulses) result in a poor tuning of multiphoton resonance and become a limiting factor of resonant harmonic generation. A complete theory has been developed for harmonic generation in a four photon resonant coherent interaction. A numerical application of the theory to the Hg atom successfully interprets the experimental observations in terms of the phase dependent stimulated Raman scattering. With the intensity required for four photon resonant transition, the calculation predicts a dramatic Stark shift effect which completely destroys the resonance condition. This model provides a basis for the development of future schemes for efficient higher order coherent upconversion.
Date: August 1987
Creator: Mukherjee, Nandini
Partner: UNT Libraries

Two Photon Resonant Picosecond Pulse Propagation in Lithium Vapor

Description: The work of this dissertation has been to prove that the coherence of multiphoton excitation can be studied by an appropriately phased and time delayed sequence of pulses. An application of this fundamental study of coherence has been made for the enhancement of third harmonic generation. The coherent recovery of the energy lost to the two photon absorption process enalled a larger propagation distance for the fundamental than in an interaction which is incoherent or coherent, but not using a 90 degree phase shifted pulse pair. Phase matching over this longer propagation distance gave an enhancement of third harmonic generation.
Date: August 1987
Creator: Mukherjee, Anadi
Partner: UNT Libraries

Dispersion of the Nonlinear Refractive Index of CS₂ in the Spectral Range of 9-11 μm

Description: The nonlinear refractive index (n2) of room temperature liquid CS2 in the wavelength range of 9 to 11 micrometers is measured. A line tunable hybrid C02 TEA laser and amplifier system is used for the experiments. In these measurements the well known photoacoustic method is utilized to observe the onset of whole beam self-focusing. The photoacoustic signal in a CS2 cell, much longer than the confocal parameter, is monitored. The departure of the acoustic signal from linear growth marks the critical power for the onset of nonlinearity. It is experimentally verified that the phenomenon is power dependent as expected from self-focusing theory. The value of n2 is then calculated from the theoretical model of self focusing. Measurements of the on-axis irradiance transmitted through the nonlinear material as well as the measurements of beam distortion are used to verify the validity of the photoacoustic method. In all the measurements the on-axis intensity was smaller than the calculated threshold intensity for stimulated Brillouin scattering. The back reflection was monitored to make sure that stimulated Brillouin scattering was not playing a role in the phenomenon.
Date: May 1987
Creator: Mohebi, Mehrdad
Partner: UNT Libraries

Studies of Classically Chaotic Quantum Systems within the Pseudo-Probablilty Formalism

Description: The evolution of classically chaotic quantum systems is analyzed within the formalism of Quantum Pseudo-Probability Distributions. Due to the deep connections that a quantum system shows with its classical correspondent in this representation, the Pseudo-Probability formalism appears to be a useful method of investigation in the field of "Quantum Chaos." In the first part of the thesis we generalize this formalism to quantum systems containing spin operators. It is shown that a classical-like equation of motion for the pseudo-probability distribution ρw can be constructed, dρw/dt = (L_CL + L_QGD)ρw, which is rigorously equivalent to the quantum von Neumann-Liouville equation. The operator L_CL is undistinguishable from the classical operator that generates the semiclassical equations of motion. In the case of the spin-boson system this operator produces semiclassical chaos and is responsible for quantum irreversibility and the fast growth of quantum uncertainty. Carrying out explicit calculations for a spin-boson Hamiltonian the joint action of L_CL and L_QGD is illustrated. It is shown that the latter operator, L_QGD makes the spin system 'remember' its quantum nature, and competes with the irreversibility induced by the former operator. In the second part we test the idea of the enhancement of the quantum uncertainty triggered by the classical chaos by investigating the analogous effect of diffusive excitation in periodically kicked quantum systems. The classical correspondents of these quantum systems exhibit, in the chaotic region, diffusive behavior of the unperturbed energy. For the Quantum Kicked Harmonic Oscillator, in the case of quantum resonances, we provide an exact solution of the quantum evolution. This proves the existence of a deterministic drift in the energy increase over time of the system considered. More generally, this "superdiffusive" excitation of the energy is due to coherent quantum mechanical tunnelling between degenerate tori of the classical phase space. In conclusion we find ...
Date: August 1992
Creator: Roncaglia, Roberto
Partner: UNT Libraries

A Two-Dimensional Model Study of Elastic Waves

Description: In seismic field operations complex problems often arise which cannot be solved mathematically. In recent years investigators in both the commercial and academic fields have begun to approach the problems of elastic wave propagation by the use of seismic scale models. This thesis discusses the results measured from simulated seismic activity on a scale model built by the researcher.
Date: 1955
Creator: Fulton, Thomas K.
Partner: UNT Libraries

A Continuously Sensitive Cloud Chamber

Description: A continuous cloud chamber would be a valuable asset to laboratory work in nuclear and atomic physics. For this reason the construction and investigation of a continuously sensitive diffusion cloud chamber has been undertaken. It is the purpose of this paper to report the design and operating characteristics of such a chamber.
Date: 1951
Creator: Hughes, James E.
Partner: UNT Libraries

The Fractal Stochastic Point Process Model of Molecular Evolution and the Multiplicative Evolution Statistical Hypothesis

Description: A fractal stochastic point process (FSPP) is used to model molecular evolution in agreement with the relationship between the variance and mean numbers of synonymous and nonsynonymous substitutions in mammals. Like other episodic models such as the doubly stochastic Poisson process, this model accounts for the large variances observed in amino acid substitution rates, but unlike other models, it also accounts for the results of Ohta's (1995) analysis of synonymous and nonsynonymous substitutions in mammalian genes. That analysis yields a power-law increase in the index of dispersion and an inverse power-law decrease in the coefficient of variation with the mean number of substitutions, as predicted by the FSPP model but not by the doubly stochastic Poisson model. This result is compatible with the selection theory of evolution and the nearly-neutral theory of evolution.
Date: May 1997
Creator: Bickel, David R. (David Robert)
Partner: UNT Libraries

A Study of Some Biological Effects of Non-Ionizing Electromagnetic Radiation

Description: The experimental studies of this work were done using a microwave cavity spectrometer, Escherichia coli (E-coli) bacteria, and other peripheral equipment. The experiment consists of two steps. First, a general survey of frequencies from 8 GHz to 12 GHz was made. Second, a detailed experiment for specific frequencies selected from the first survey were further studied. Interesting frequency dependent results, such as unusually higher growing or killing rates of E-coli at some frequencies, were found. It is also concluded that some results are genetic, that is, the 2nd, and 3rd subcultures showed the same growing status as the 1st cultures.
Date: December 1996
Creator: Park, Young C. (Young Chul), 1960-
Partner: UNT Libraries

Microstructural Studies of Dental Amalgams Using Analytical Transmission Electron Microscopy

Description: Dental amalgams have been used for centuries as major restorative materials for decaying teeth. Amalgams are prepared by mixing alloy particles which contain Ag, Sn, and Cu as the major constituent elements with liquid Hg. The study of microstructure is essential in understanding the setting reactions and improving the properties of amalgams. Until the work reported in this dissertation, optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffractometry (XRD) were used commonly to analyze amalgam microstructures. No previous systematic transmission electron microscopy (TEM) study has been performed due to sample preparation difficulties and composite structure of dental amalgams. The goal of this research was to carry out detailed microstructural and compositional studies of dental amalgams. This was accomplished using the enhanced spatial resolution of the TEM and its associated microanalytical techniques, namely, scanning transmission electron microscopy (STEM), x-ray energy dispersive spectroscopy (XEDS) and micro-microdiffraction (μμD). A new method was developed for thinning amalgam samples to electron transparency using the "wedge technique." Velvalloy, a low-Cu amalgam, and Tytin, a high-Cu amalgam, were the two amalgams characterized. Velvalloy is composed of a Ag₂Hg₃ (γ₁)/HgSn₇₋₉ (γ₂) matrix surrounding unreacted Ag₃Sn (γ) particles. In addition, hitherto uncharacterized reaction layers between Ag₃Sn(γ)/Ag₂Hg₃ (γ₂) and Ag₂Hg₃ (γ₁)/HgSn₇₋₉ (γ₂) were observed and analyzed. An Ag-Hg-Sn (β₁) phase was clearly identified for the first time. In Tytin, the matrix consists of Ag₂Hg₃ (γ₁) grains. Fine precipitates of Cu₆Sn₅ (η') are embedded inside the γ₁ and at the grain boundaries. These precipitates are responsible for the improved creep resistance of Tytin compared to Velvalloy. The additional Cu has completely eliminated the γ₂ phase which is the weakest component of amalgams. Ag-Hg-Sn (β₁) and large grains of Cu₆Sn₅ (η') are found adjacent to the unreacted alloy particles. Tytin alloy particles contain Cu₃Sn (ε) precipitates in a matrix of Ag₃Sn ...
Date: May 1997
Creator: Hooghan, Tejpal Kaur
Partner: UNT Libraries

Temperature Dependency of Some of the Thermodynamical Properties of Aqueous Binary-Mixture Systems

Description: The temperature dependence of the refractive index and the density of aqueous binary mixtures of water and ethyl alcohol (C₂H₅OH) were measured by using a modified Michelson interferometer and a narrow glass capillary tube over the temperature range of 278≤T≤353 K for solutions of 100, 75,65, 50, 25, 10 and 0 volume percent ethyl alcohol. The temperature was cycled over both increasing and decreasing directions to explore hysteresis in the cycling. The data are discussed and compared with the Lorentz-Lorenz (LL) formula. A more accurate formula which fits the experimental data better than the LL relation was derived. An attempt was made to determine the nature of the solvent-solute interaction through any changes that were found in the refractive index for He-Ne laser light and IR diode signals and to analyze the refractive index and density results to test the accuracy of the available mixing rules in predicting the refractive index values and the density of binary systems. Conductivity measurements (d. c.) over the temperature range 278≤T≤353 K of aqueous solutions of NaCl at various concentrations were made and used to establish transport properties of ions in solution. The dynamical properties of the electrolytes were used to establish the nature of hydrogen bonding in aqueous binary mixture systems. Rate equations for ion formation and recombination were used to establish the temperature ranges in which hydrogen bonding dominated in forming polymeric species. From experimental data on the binary mixtures with water, a better understanding of water in its different functions and aggregation is possible. The water molecule itself and its response to the environment are understood when suitable studies are made of the forces in the system. In this work, some qualitative aspects of the interactions and dynamics of the water molecule have been investigated. Classical molecular dynamics simulations were tried ...
Date: August 1996
Creator: Zheng, Yueming
Partner: UNT Libraries