UNT Theses and Dissertations - 195 Matching Results

Search Results

Algorithm Optimizations in Genomic Analysis Using Entropic Dissection

Description: In recent years, the collection of genomic data has skyrocketed and databases of genomic data are growing at a faster rate than ever before. Although many computational methods have been developed to interpret these data, they tend to struggle to process the ever increasing file sizes that are being produced and fail to take advantage of the advances in multi-core processors by using parallel processing. In some instances, loss of accuracy has been a necessary trade off to allow faster computation of the data. This thesis discusses one such algorithm that has been developed and how changes were made to allow larger input file sizes and reduce the time required to achieve a result without sacrificing accuracy. An information entropy based algorithm was used as a basis to demonstrate these techniques. The algorithm dissects the distinctive patterns underlying genomic data efficiently requiring no a priori knowledge, and thus is applicable in a variety of biological research applications. This research describes how parallel processing and object-oriented programming techniques were used to process larger files in less time and achieve a more accurate result from the algorithm. Through object oriented techniques, the maximum allowable input file size was significantly increased from 200 mb to 2000 mb. Using parallel processing techniques allowed the program to finish processing data in less than half the time of the sequential version. The accuracy of the algorithm was improved by reducing data loss throughout the algorithm. Finally, adding user-friendly options enabled the program to use requests more effectively and further customize the logic used within the algorithm.
Date: August 2015
Creator: Danks, Jacob R.
Partner: UNT Libraries

Automatic Removal of Complex Shadows From Indoor Videos

Description: Shadows in indoor scenarios are usually characterized with multiple light sources that produce complex shadow patterns of a single object. Without removing shadow, the foreground object tends to be erroneously segmented. The inconsistent hue and intensity of shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding and transfer learning-based method for removing shadows is proposed. The method suppresses light shadows with a dynamically computed threshold and removes dark shadows using an online learning strategy that is built upon a base classifier trained with manually annotated examples and refined with the automatically identified examples in the new videos. Experimental results demonstrate that despite variation of lighting conditions in videos our proposed method is able to adapt to the videos and remove shadows effectively. The sensitivity of shadow detection changes slightly with different confidence levels used in example selection for classifier retraining and high confidence level usually yields better performance with less retraining iterations.
Date: August 2015
Creator: Mohapatra, Deepankar
Partner: UNT Libraries

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Description: Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of efficiently discovering non-causal factors are developed and proved. In addition, when the background knowledge is partially known, methods of graph decomposition are provided so as to reduce the number of conditioned variables. Experiments on both synthetic data and real epidemiological data indicate the provided methods are applicable to large-scale datasets and scalable for causal analysis in health data. Followed by the research methods and experiments, this dissertation gives thoughtful discussions on the reliability of causal discoveries computational health science research, complexity, and implications in health science research.
Date: August 2015
Creator: Liang, Yiheng
Partner: UNT Libraries

Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies

Description: POD (Point of Dispensing)-based emergency response plans involving mass prophylaxis may seem feasible when considering the choice of dispensing points within a region, overall population density, and estimated traffic demands. However, the plan may fail to serve particular vulnerable sub-populations, resulting in access disparities during emergency response. Federal authorities emphasize on the need to identify sub-populations that cannot avail regular services during an emergency due to their special needs to ensure effective response. Vulnerable individuals require the targeted allocation of appropriate resources to serve their special needs. Devising schemes to address the needs of vulnerable sub-populations is essential for the effectiveness of response plans. This research focuses on data-driven computational methods to quantify and address vulnerabilities in response plans that require the allocation of targeted resources. Data-driven methods to identify and quantify vulnerabilities in response plans are developed as part of this research. Addressing vulnerabilities requires the targeted allocation of appropriate resources to PODs. The problem of resource allocation to PODs during public health emergencies is introduced and the variants of the resource allocation problem such as the spatial allocation, spatio-temporal allocation and optimal resource subset variants are formulated. Generating optimal resource allocation and scheduling solutions can be computationally hard problems. The application of metaheuristic techniques to find near-optimal solutions to the resource allocation problem in response plans is investigated. A vulnerability analysis and resource allocation framework that facilitates the demographic analysis of population data in the context of response plans, and the optimal allocation of resources with respect to the analysis are described.
Date: August 2015
Creator: Indrakanti, Saratchandra
Partner: UNT Libraries

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Description: Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature characterizations, and 3) the use of overlapping bigrams as the textual working unit to assist in context analysis and reconstruction.
Date: August 2015
Creator: Bristow, Kelly H.
Partner: UNT Libraries

Integrity Verification of Applications on RADIUM Architecture

Description: Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept of program invariants that can be used to learn the correct behavior of an application. I used Daikon, a tool to obtain dynamic likely invariants, and developed a method of observing these properties at runtime to verify the integrity. The integrity measurement component was implemented as a Python module on top of Volatility, a virtual machine introspection tool. My approach is a first step towards integrity attestation, using hypervisor-based introspection on RADIUM and a proof of concept of application-level measurement capability.
Date: August 2015
Creator: Tarigopula, Mohan Krishna
Partner: UNT Libraries

Maintaining Web Applications Integrity Running on RADIUM

Description: Computer security attacks take place due to the presence of vulnerabilities and bugs in software applications. Bugs and vulnerabilities are the result of weak software architecture and lack of standard software development practices. Despite the fact that software companies are investing millions of dollars in the research and development of software designs security risks are still at large. In some cases software applications are found to carry vulnerabilities for many years before being identified. A recent such example is the popular Heart Bleed Bug in the Open SSL/TSL. In today’s world, where new software application are continuously being developed for a varied community of users; it’s highly unlikely to have software applications running without flaws. Attackers on computer system securities exploit these vulnerabilities and bugs and cause threat to privacy without leaving any trace. The most critical vulnerabilities are those which are related to the integrity of the software applications. Because integrity is directly linked to the credibility of software application and data it contains. Here I am giving solution of maintaining web applications integrity running on RADIUM by using daikon. Daikon generates invariants, these invariants are used to maintain the integrity of the web application and also check the correct behavior of web application at run time on RADIUM architecture in case of any attack or malware. I used data invariants and program flow invariants in my solution to maintain the integrity of web-application against such attack or malware. I check the behavior of my proposed invariants at run-time using Lib-VMI/Volatility memory introspection tool. This is a novel approach and proof of concept toward maintaining web application integrity on RADIUM.
Date: August 2015
Creator: Ur-Rehman, Wasi
Partner: UNT Libraries

Predictive Modeling for Persuasive Ambient Technology

Description: Computer scientists are increasingly aware of the power of ubiquitous computing systems that can display information in and about the user's environment. One sub category of ubiquitous computing is persuasive ambient information systems that involve an informative display transitioning between the periphery and center of attention. The goal of this ambient technology is to produce a behavior change, implying that a display must be informative, unobtrusive, and persuasive. While a significant body of research exists on ambient technology, previous research has not fully explored the different measures to identify behavior change, evaluation techniques for linking design characteristics to visual effectiveness, nor the use of short-term goals to affect long-term behavior change. This study uses the unique context of noise-induced hearing loss (NIHL) among collegiate musicians to explore these issues through developing the MIHL Reduction Feedback System that collects real-time data, translates it into visuals for music classrooms, provides predictive outcomes for goalsetting persuasion, and provides statistical measures of behavior change.
Date: August 2015
Creator: Powell, Jason W.
Partner: UNT Libraries

Radium: Secure Policy Engine in Hypervisor

Description: The basis of today’s security systems is the trust and confidence that the system will behave as expected and are in a known good trusted state. The trust is built from hardware and software elements that generates a chain of trust that originates from a trusted known entity. Leveraging hardware, software and a mandatory access control policy technology is needed to create a trusted measurement environment. Employing a control layer (hypervisor or microkernel) with the ability to enforce a fine grained access control policy with hyper call granularity across multiple guest virtual domains can ensure that any malicious environment to be contained. In my research, I propose the use of radium's Asynchronous Root of Trust Measurement (ARTM) capability incorporated with a secure mandatory access control policy engine that would mitigate the limitations of the current hardware TPM solutions. By employing ARTM we can leverage asynchronous use of boot, launch, and use with the hypervisor proving its state and the integrity of the secure policy. My solution is using Radium (Race free on demand integrity architecture) architecture that will allow a more detailed measurement of applications at run time with greater semantic knowledge of the measured environments. Radium incorporation of a secure access control policy engine will give it the ability to limit or empower a virtual domain system. It can also enable the creation of a service oriented model of guest virtual domains that have the ability to perform certain operations such as introspecting other virtual domain systems to determine the integrity or system state and report it to a remote entity.
Date: August 2015
Creator: Shah, Tawfiq M.
Partner: UNT Libraries

Towards Resistance Detection in Health Behavior Change Dialogue Systems

Description: One of the challenges fairly common in motivational interviewing is patient resistance to health behavior change. Hence, automated dialog systems aimed at counseling patients need to be capable of detecting resistance and appropriately altering dialog. This thesis focusses primarily on the development of such a system for automatic identification of patient resistance to behavioral change. This enables the dialogue system to direct the discourse towards a more agreeable ground and helping the patient overcome the obstacles in his or her way to change. This thesis also proposes a dialogue system framework for health behavior change via natural language analysis and generation. The proposed framework facilitates automated motivational interviewing from clinical psychology and involves three broad stages: rapport building and health topic identification, assessment of the patient’s opinion about making a change, and developing a plan. Using this framework patients can be encouraged to reflect on the options available and choose the best for a healthier life.
Date: August 2015
Creator: Sarma, Bandita
Partner: UNT Libraries

Unique Channel Email System

Description: Email connects 85% of the world. This paper explores the pattern of information overload encountered by majority of email users and examine what steps key email providers are taking to combat the problem. Besides fighting spam, popular email providers offer very limited tools to reduce the amount of unwanted incoming email. Rather, there has been a trend to expand storage space and aid the organization of email. Storing email is very costly and harmful to the environment. Additionally, information overload can be detrimental to productivity. We propose a simple solution that results in drastic reduction of unwanted mail, also known as graymail.
Date: August 2015
Creator: Balakchiev, Milko
Partner: UNT Libraries

Classifying Pairwise Object Interactions: A Trajectory Analytics Approach

Description: We have a huge amount of video data from extensively available surveillance cameras and increasingly growing technology to record the motion of a moving object in the form of trajectory data. With proliferation of location-enabled devices and ongoing growth in smartphone penetration as well as advancements in exploiting image processing techniques, tracking moving objects is more flawlessly achievable. In this work, we explore some domain-independent qualitative and quantitative features in raw trajectory (spatio-temporal) data in videos captured by a fixed single wide-angle view camera sensor in outdoor areas. We study the efficacy of those features in classifying four basic high level actions by employing two supervised learning algorithms and show how each of the features affect the learning algorithms’ overall accuracy as a single factor or confounded with others.
Date: May 2015
Creator: Janmohammadi, Siamak
Partner: UNT Libraries

Distributed Frameworks Towards Building an Open Data Architecture

Description: Data is everywhere. The current Technological advancements in Digital, Social media and the ease at which the availability of different application services to interact with variety of systems are causing to generate tremendous volumes of data. Due to such varied services, Data format is now not restricted to only structure type like text but can generate unstructured content like social media data, videos and images etc. The generated Data is of no use unless been stored and analyzed to derive some Value. Traditional Database systems comes with limitations on the type of data format schema, access rates and storage sizes etc. Hadoop is an Apache open source distributed framework that support storing huge datasets of different formatted data reliably on its file system named Hadoop File System (HDFS) and to process the data stored on HDFS using MapReduce programming model. This thesis study is about building a Data Architecture using Hadoop and its related open source distributed frameworks to support a Data flow pipeline on a low commodity hardware. The Data flow components are, sourcing data, storage management on HDFS and data access layer. This study also discuss about a use case to utilize the architecture components. Sqoop, a framework to ingest the structured data from database onto Hadoop and Flume is used to ingest the semi-structured Twitter streaming json data on to HDFS for analysis. The data sourced using Sqoop and Flume have been analyzed using Hive for SQL like analytics and at a higher level of data access layer, Hadoop has been compared with an in memory computing system using Spark. Significant differences in query execution performances have been analyzed when working with Hadoop and Spark frameworks. This integration helps for ingesting huge Volumes of streaming json Variety data to derive better Value based analytics using Hive and ...
Date: May 2015
Creator: Venumuddala, Ramu Reddy
Partner: UNT Libraries

Investigation on Segmentation, Recognition and 3D Reconstruction of Objects Based on LiDAR Data Or MRI

Description: Segmentation, recognition and 3D reconstruction of objects have been cutting-edge research topics, which have many applications ranging from environmental and medical to geographical applications as well as intelligent transportation. In this dissertation, I focus on the study of segmentation, recognition and 3D reconstruction of objects using LiDAR data/MRI. Three main works are that (I). Feature extraction algorithm based on sparse LiDAR data. A novel method has been proposed for feature extraction from sparse LiDAR data. The algorithm and the related principles have been described. Also, I have tested and discussed the choices and roles of parameters. By using correlation of neighboring points directly, statistic distribution of normal vectors at each point has been effectively used to determine the category of the selected point. (II). Segmentation and 3D reconstruction of objects based on LiDAR/MRI. The proposed method includes that the 3D LiDAR data are layered, that different categories are segmented, and that 3D canopy surfaces of individual tree crowns and clusters of trees are reconstructed from LiDAR point data based on a region active contour model. The proposed method allows for delineations of 3D forest canopy naturally from the contours of raw LiDAR point clouds. The proposed model is suitable not only for a series of ideal cone shapes, but also for other kinds of 3D shapes as well as other kinds dataset such as MRI. (III). Novel algorithms for recognition of objects based on LiDAR/MRI. Aimed to the sparse LiDAR data, the feature extraction algorithm has been proposed and applied to classify the building and trees. More importantly, the novel algorithms based on level set methods have been provided and employed to recognize not only the buildings and trees, the different trees (e.g. Oak trees and Douglas firs), but also the subthalamus nuclei (STNs). By using the novel algorithms based ...
Date: May 2015
Creator: Tang, Shijun
Partner: UNT Libraries

The Procedural Generation of Interesting Sokoban Levels

Description: As video games continue to become larger, more complex, and more costly to produce, research into methods to make game creation easier and faster becomes more valuable. One such research topic is procedural generation, which allows the computer to assist in the creation of content. This dissertation presents a new algorithm for the generation of Sokoban levels. Sokoban is a grid-based transport puzzle which is computational interesting due to being PSPACE-complete. Beyond just generating levels, the question of whether or not the levels created by this algorithm are interesting to human players is explored. A study was carried out comparing player attention while playing hand made levels versus their attention during procedurally generated levels. An auditory Stroop test was used to measure attention without disrupting play.
Date: May 2015
Creator: Taylor, Joshua
Partner: UNT Libraries

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Arigong, Bayaner
Partner: UNT Libraries

Trajectory Analytics

Description: The numerous surveillance videos recorded by a single stationary wide-angle-view camera persuade the use of a moving point as the representation of each small-size object in wide video scene. The sequence of the positions of each moving point can be used to generate a trajectory containing both spatial and temporal information of object's movement. In this study, we investigate how the relationship between two trajectories can be used to recognize multi-agent interactions. For this purpose, we present a simple set of qualitative atomic disjoint trajectory-segment relations which can be utilized to represent the relationships between two trajectories. Given a pair of adjacent concurrent trajectories, we segment the trajectory pair to get the ordered sequence of related trajectory-segments. Each pair of corresponding trajectory-segments then is assigned a token associated with the trajectory-segment relation, which leads to the generation of a string called a pairwise trajectory-segment relationship sequence. From a group of pairwise trajectory-segment relationship sequences, we utilize an unsupervised learning algorithm, particularly the k-medians clustering, to detect interesting patterns that can be used to classify lower-level multi-agent activities. We evaluate the effectiveness of the proposed approach by comparing the activity classes predicted by our method to the actual classes from the ground-truth set obtained using the crowdsourcing technique. The results show that the relationships between a pair of trajectories can signify the low-level multi-agent activities.
Date: May 2015
Creator: Santiteerakul, Wasana
Partner: UNT Libraries

Video Analytics with Spatio-Temporal Characteristics of Activities

Description: As video capturing devices become more ubiquitous from surveillance cameras to smart phones, the demand of automated video analysis is increasing as never before. One obstacle in this process is to efficiently locate where a human operator’s attention should be, and another is to determine the specific types of activities or actions without ambiguity. It is the special interest of this dissertation to locate spatial and temporal regions of interest in videos and to develop a better action representation for video-based activity analysis. This dissertation follows the scheme of “locating then recognizing” activities of interest in videos, i.e., locations of potentially interesting activities are estimated before performing in-depth analysis. Theoretical properties of regions of interest in videos are first exploited, based on which a unifying framework is proposed to locate both spatial and temporal regions of interest with the same settings of parameters. The approach estimates the distribution of motion based on 3D structure tensors, and locates regions of interest according to persistent occurrences of low probability. Two contributions are further made to better represent the actions. The first is to construct a unifying model of spatio-temporal relationships between reusable mid-level actions which bridge low-level pixels and high-level activities. Dense trajectories are clustered to construct mid-level actionlets, and the temporal relationships between actionlets are modeled as Action Graphs based on Allen interval predicates. The second is an effort for a novel and efficient representation of action graphs based on a sparse coding framework. Action graphs are first represented using Laplacian matrices and then decomposed as a linear combination of primitive dictionary items following sparse coding scheme. The optimization is eventually formulated and solved as a determinant maximization problem, and 1-nearest neighbor is used for action classification. The experiments have shown better results than existing approaches for regions-of-interest detection and action ...
Date: May 2015
Creator: Cheng, Guangchun
Partner: UNT Libraries

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Description: This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting multimodal sentiment analysis system is shown to significantly outperform the use of language alone. Using this system, we were able to predict the sentiment expressed in video reviews and also the sentiment experienced by viewers while exposed to emotionally loaded content. Second, the thesis provides evidence of the portability of the developed strategies to other affect recognition problems. We provided support for this by studying the deception detection problem. Third, this thesis contributes several multimodal datasets that will enable further research in sentiment and deception detection.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Pérez-Rosas, Verónica
Partner: UNT Libraries

Modeling and Analysis of Intentional And Unintentional Security Vulnerabilities in a Mobile Platform

Description: Mobile phones are one of the essential parts of modern life. Making a phone call is not the main purpose of a smart phone anymore, but merely one of many other features. Online social networking, chatting, short messaging, web browsing, navigating, and photography are some of the other features users enjoy in modern smartphones, most of which are provided by mobile apps. However, with this advancement, many security vulnerabilities have opened up in these devices. Malicious apps are a major threat for modern smartphones. According to Symantec Corp., by the middle of 2013, about 273,000 Android malware apps were identified. It is a complex issue to protect everyday users of mobile devices from the attacks of technologically competent hackers, illegitimate users, trolls, and eavesdroppers. This dissertation emphasizes the concept of intention identification. Then it looks into ways to utilize this intention identification concept to enforce security in a mobile phone platform. For instance, a battery monitoring app requiring SMS permissions indicates suspicious intention as battery monitoring usually does not need SMS permissions. Intention could be either the user's intention or the intention of an app. These intentions can be identified using their behavior or by using their source code. Regardless of the intention type, identifying it, evaluating it, and taking actions by using it to prevent any malicious intentions are the main goals of this research. The following four different security vulnerabilities are identified in this research: Malicious apps, spammers and lurkers in social networks, eavesdroppers in phone conversations, and compromised authentication. These four vulnerabilities are solved by detecting malware applications, identifying malicious users in a social network, enhancing the encryption system of a phone communication, and identifying user activities using electroencephalogram (EEG) for authentication. Each of these solutions are constructed using the idea of intention identification. Furthermore, many of ...
Date: December 2014
Creator: Fazeen, Mohamed & Issadeen, Mohamed
Partner: UNT Libraries

A New Look at Retargetable Compilers

Description: Consumers demand new and innovative personal computing devices every 2 years when their cellular phone service contracts are renewed. Yet, a 2 year development cycle for the concurrent development of both hardware and software is nearly impossible. As more components and features are added to the devices, maintaining this 2 year cycle with current tools will become commensurately harder. This dissertation delves into the feasibility of simplifying the development of such systems by employing heterogeneous systems on a chip in conjunction with a retargetable compiler such as the hybrid computer retargetable compiler (Hy-C). An example of a simple architecture description of sufficient detail for use with a retargetable compiler like Hy-C is provided. As a software engineer with 30 years of experience, I have witnessed numerous system failures. A plethora of software development paradigms and tools have been employed to prevent software errors, but none have been completely successful. Much discussion centers on software development in the military contracting market, as that is my background. The dissertation reviews those tools, as well as some existing retargetable compilers, in an attempt to determine how those errors occurred and how a system like Hy-C could assist in reducing future software errors. In the end, the potential for a simple retargetable solution like Hy-C is shown to be very simple, yet powerful enough to provide a very capable product in a very fast-growing market.
Date: December 2014
Creator: Burke, Patrick William
Partner: UNT Libraries

Smartphone-based Household Travel Survey - a Literature Review, an App, and a Pilot Survey

Description: High precision data from household travel survey (HTS) is extremely important for the transportation research, traffic models and policy formulation. Traditional methods of data collection were imprecise because they relied on people’s memories of trip information, such as date and location, and the remainder data had to be obtained by certain supplemental tools. The traditional methods suffered from intensive labor, large time consumption, and unsatisfactory data precision. Recent research trends to employ smartphone apps to collect HTS data. In this study, there are two goals to be addressed. First, a smartphone app is developed to realize a smartphone-based method only for data collection. Second, the researcher evaluates whether this method can supply or replace the traditional tools of HTS. Based on this premise, the smartphone app, TravelSurvey, is specially developed and used for this study. TravelSurvey is currently compatible with iPhone 4 or higher and iPhone Operating System (iOS) 6 or higher, except iPhone 6 or iPhone 6 plus and iOS 8. To evaluate the feasibility, eight individuals are recruited to participate in a pilot HTS. Afterwards, seven of them are involved in a semi-structured interview. The interview is designed to collect interviewees’ feedback directly, so the interview mainly concerns the users’ experience of TravelSurvey. Generally, the feedback is positive. In this study, the pilot HTS data is successfully uploaded to the server by the participants, and the interviewees prefer this smartphone-based method. Therefore, as a new tool, the smartphone-based method feasibly supports a typical HTS for data collection.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Wang, Qian
Partner: UNT Libraries

Uncertainty Evaluation in Large-scale Dynamical Systems: Theory and Applications

Description: Significant research efforts have been devoted to large-scale dynamical systems, with the aim of understanding their complicated behaviors and managing their responses in real-time. One pivotal technological obstacle in this process is the existence of uncertainty. Although many of these large-scale dynamical systems function well in the design stage, they may easily fail when operating in realistic environment, where environmental uncertainties modulate system dynamics and complicate real-time predication and management tasks. This dissertation aims to develop systematic methodologies to evaluate the performance of large-scale dynamical systems under uncertainty, as a step toward real-time decision support. Two uncertainty evaluation approaches are pursued: the analytical approach and the effective simulation approach. The analytical approach abstracts the dynamics of original stochastic systems, and develops tractable analysis (e.g., jump-linear analysis) for the approximated systems. Despite the potential bias introduced in the approximation process, the analytical approach provides rich insights valuable for evaluating and managing the performance of large-scale dynamical systems under uncertainty. When a system’s complexity and scale are beyond tractable analysis, the effective simulation approach becomes very useful. The effective simulation approach aims to use a few smartly selected simulations to quickly evaluate a complex system’s statistical performance. This approach was originally developed to evaluate a single uncertain variable. This dissertation extends the approach to be scalable and effective for evaluating large-scale systems under a large-number of uncertain variables. While a large portion of this dissertation focuses on the development of generic methods and theoretical analysis that are applicable to broad large-scale dynamical systems, many results are illustrated through a representative large-scale system application on strategic air traffic management application, which is concerned with designing robust management plans subject to a wide range of weather possibilities at 2-15 hours look-ahead time.
Date: December 2014
Creator: Zhou, Yi (Software engineer)
Partner: UNT Libraries

A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

Description: Mitigation response plans must be created to protect affected populations during biological emergencies resulting from the release of harmful biochemical substances. Medical countermeasures have been stockpiled by the federal government for such emergencies. However, it is the responsibility of local governments to maintain solid, functional plans to apply these countermeasures to the entire target population within short, mandated time frames. Further, vulnerabilities in the population may serve as barriers preventing certain individuals from participating in mitigation activities. Therefore, functional response plans must be capable of reaching vulnerable populations.Transportation vulnerability results from lack of access to transportation. Transportation vulnerable populations located too far from mitigation resources are at-risk of not being able to participate in mitigation activities. Quantification of these populations requires the development of computational methods to integrate spatial demographic data and transportation resource data from disparate sources into the context of planned mitigation efforts. Research described in this dissertation focuses on quantifying transportation vulnerable populations and maximizing participation in response efforts. Algorithms developed as part of this research are integrated into a computational framework to promote a transition from research and development to deployment and use by biological emergency planners.
Date: August 2014
Creator: O’Neill II, Martin Joseph
Partner: UNT Libraries