UNT Theses and Dissertations - Browse

ABOUT BROWSE FEED

VLSI Architecture and FPGA Prototyping of a Secure Digital Camera for Biometric Application

Description: This thesis presents a secure digital camera (SDC) that inserts biometric data into images found in forms of identification such as the newly proposed electronic passport. However, putting biometric data in passports makes the data vulnerable for theft, causing privacy related issues. An effective solution to combating unauthorized access such as skimming (obtaining data from the passport's owner who did not willingly submit the data) or eavesdropping (intercepting information as it moves from the chip to the reader) could be judicious use of watermarking and encryption at the source end of the biometric process in hardware like digital camera or scanners etc. To address such issues, a novel approach and its architecture in the framework of a digital camera, conceptualized as an SDC is presented. The SDC inserts biometric data into passport image with the aid of watermarking and encryption processes. The VLSI (very large scale integration) architecture of the functional units of the SDC such as watermarking and encryption unit is presented. The result of the hardware implementation of Rijndael advanced encryption standard (AES) and a discrete cosine transform (DCT) based visible and invisible watermarking algorithm is presented. The prototype chip can carry out simultaneous encryption and watermarking, which to our knowledge is the first of its kind. The encryption unit has a throughput of 500 Mbit/s and the visible and invisible watermarking unit has a max frequency of 96.31 MHz and 256 MHz respectively.
Date: August 2006
Creator: Adamo, Oluwayomi Bamidele
Partner: UNT Libraries

Comparison and Evaluation of Existing Analog Circuit Simulator using Sigma-Delta Modulator

Description: In the world of VLSI (very large scale integration) technology, there are many different types of circuit simulators that are used to design and predict the circuit behavior before actual fabrication of the circuit. In this thesis, I compared and evaluated existing circuit simulators by considering standard benchmark circuits. The circuit simulators which I evaluated and explored are Ngspice, Tclspice, Winspice (open source) and Spectre® (commercial). I also tested standard benchmarks using these circuit simulators and compared their outputs. The simulators are evaluated using design metrics in order to quantify their performance and identify efficient circuit simulators. In addition, I designed a sigma-delta modulator and its individual components using the analog behavioral language Verilog-A. Initially, I performed simulations of individual components of the sigma-delta modulator and later of the whole system. Finally, CMOS (complementary metal-oxide semiconductor) transistor-level circuits were designed for the differential amplifier, operational amplifier and comparator of the modulator.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2006
Creator: Ale, Anil Kumar
Partner: UNT Libraries

Exploring Analog and Digital Design Using the Open-Source Electric VLSI Design System

Description: The design of VLSI electronic circuits can be achieved at many different abstraction levels starting from system behavior to the most detailed, physical layout level. As the number of transistors in VLSI circuits is increasing, the complexity of the design is also increasing, and it is now beyond human ability to manage. Hence CAD (Computer Aided design) or EDA (Electronic Design Automation) tools are involved in the design. EDA or CAD tools automate the design, verification and testing of these VLSI circuits. In today’s market, there are many EDA tools available. However, they are very expensive and require high-performance platforms. One of the key challenges today is to select appropriate CAD or EDA tools which are open-source for academic purposes. This thesis provides a detailed examination of an open-source EDA tool called Electric VLSI Design system. An excellent and efficient CAD tool useful for students and teachers to implement ideas by modifying the source code, Electric fulfills these requirements. This thesis' primary objective is to explain the Electric software features and architecture and to provide various digital and analog designs that are implemented by this software for educational purposes. Since the choice of an EDA tool is based on the efficiency and functions that it can provide, this thesis explains all the analysis and synthesis tools that electric provides and how efficient they are. Hence, this thesis is of benefit for students and teachers that choose Electric as their open-source EDA tool for educational purposes.
Date: May 2016
Creator: Aluru, Gunasekhar
Partner: UNT Libraries

A New N-way Reconfigurable Data Cache Architecture for Embedded Systems

Description: Performance and power consumption are most important issues while designing embedded systems. Several studies have shown that cache memory consumes about 50% of the total power in these systems. Thus, the architecture of the cache governs both performance and power usage of embedded systems. A new N-way reconfigurable data cache is proposed especially for embedded systems. This thesis explores the issues and design considerations involved in designing a reconfigurable cache. The proposed reconfigurable data cache architecture can be configured as direct-mapped, two-way, or four-way set associative using a mode selector. The module has been designed and simulated in Xilinx ISE 9.1i and ModelSim SE 6.3e using the Verilog hardware description language.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2009
Creator: Bani, Ruchi Rastogi
Partner: UNT Libraries

Exploring Memristor Based Analog Design in Simscape

Description: With conventional CMOS technologies approaching their scaling limits, researchers are actively investigating alternative technologies for ever increasing computing and mobile demand. A number of different technologies are currently being studied by different research groups. In the last decade, one-dimensional (1D) carbon nanotubes (CNT), graphene, which is a two-dimensional (2D) natural occurring carbon rolled in tubular form, and zero-dimensional (0D) fullerenes have been the subject of intensive research. In 2008, HP Labs announced a ground-breaking fabrication of memristors, the fourth fundamental element postulated by Chua at the University of California, Berkeley in 1971. In the last few years, the memristor has gained a lot of attention from the research community. In-depth studies of the memristor and its analog behavior have convinced the community that it has the potential in future nano-architectures for optimization of high-density memory and neuromorphic computing architectures. The objective of this thesis is to explore memristors for analog and mixed-signal system design using Simscape. This thesis presents a memristor model in the Simscape language. Simscape has been used as it has the potential for modeling large systems. A memristor based programmable oscillator is also presented with simulation results and characterization. In addition, simulation results of different memristor models are presented which are crucial for the detailed understanding of the memristor along with its properties.
Date: May 2013
Creator: Gautam, Mahesh
Partner: UNT Libraries

A Driver, Vehicle and Road Safety System Using Smartphones

Description: As vehicle manufacturers continue to increase their emphasis on safety with advanced driver assistance systems (ADAS), I propose a ubiquitous device that is able to analyze and advise on safety conditions. Mobile smartphones are increasing in popularity among younger generations with an estimated 64% of 25-34 year olds already using one in their daily lives. with over 10 million car accidents reported in the United States each year, car manufacturers have shifted their focus of a passive approach (airbags) to more active by adding features associated with ADAS (lane departure warnings). However, vehicles manufactured with these sensors are not economically priced while older vehicles might only have passive safety features. Given its accessibility and portability, I target a mobile smartphone as a device to compliment ADAS that can bring a driver assist to any vehicle without regards for any on-vehicle communication system requirements. I use the 3-axis accelerometer of multiple Android based smartphone to record and analyze various safety factors which can influence a driver while operating a vehicle. These influences with respect to the driver, vehicle and road are lane change maneuvers, vehicular comfort and road conditions. Each factor could potentially be hazardous to the health of the driver, neighboring public, and automobile and is therefore analyzed thoroughly achieving 85.60% and 89.89% classification accuracy for identifying road anomalies and lane changes, respectively. Effective use of this data can educate a potentially dangerous driver on how to operate a vehicle safely and efficiently. with real time analysis and auditory alerts of these factors, I hope to increase a driver's overall awareness to maximize safety.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2012
Creator: Gozick, Brandon
Partner: UNT Libraries

FPGA Implementations of Elliptic Curve Cryptography and Tate Pairing over Binary Field

Description: Elliptic curve cryptography (ECC) is an alternative to traditional techniques for public key cryptography. It offers smaller key size without sacrificing security level. Tate pairing is a bilinear map used in identity based cryptography schemes. In a typical elliptic curve cryptosystem, elliptic curve point multiplication is the most computationally expensive component. Similarly, Tate pairing is also quite computationally expensive. Therefore, it is more attractive to implement the ECC and Tate pairing using hardware than using software. The bases of both ECC and Tate pairing are Galois field arithmetic units. In this thesis, I propose the FPGA implementations of the elliptic curve point multiplication in GF (2283) as well as Tate pairing computation on supersingular elliptic curve in GF (2283). I have designed and synthesized the elliptic curve point multiplication and Tate pairing module using Xilinx's FPGA, as well as synthesized all the Galois arithmetic units used in the designs. Experimental results demonstrate that the FPGA implementation can speedup the elliptic curve point multiplication by 31.6 times compared to software based implementation. The results also demonstrate that the FPGA implementation can speedup the Tate pairing computation by 152 times compared to software based implementation.
Date: August 2007
Creator: Huang, Jian
Partner: UNT Libraries

Evaluating the Feasibility of Accelerometers in Hand Gestures Recognition

Description: Gesture recognition plays an important role in human computer Interaction for intelligent computing. Major applications like Gaming, Robotics and Automated Homes uses gesture recognition techniques which diminishes the usage of mechanical devices. The main goal of my thesis is to interpret SWAT team gestures using different types of sensors. Accelerometer and flex sensors were explored extensively to build a prototype for soldiers to communicate in the absence of line of sight. Arm movements were recognized by flex sensors and motion gestures by Accelerometers. Accelerometers are used to measure acceleration in respect to movement of the sensor in 3D. Flex sensors changes its resistance based on the amount of bend in the sensor. SVM is the classification algorithm used for classification of the samples. LIBSVM (Library for Support Vector Machines) is integrated software for support vector classification, regression and distribution estimation which supports multi class classification. Sensors data is connected to the WI micro dig to digitize the signal and to transmit it wirelessly to the computing device. Feature extraction and Signal windowing were the two major factors which contribute for the accuracy of the system. Mean Average value and Standard Deviation are the two features considered for accelerometer sensor data classification and Standard deviation is used for the flex sensor analysis for optimum results. Filtering of the signal is done by identifying the different states of signals which are continuously sampled.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2014
Creator: Karlaputi, Sarada
Partner: UNT Libraries

Effective and Accelerated Informative Frame Filtering in Colonoscopy Videos Using Graphic Processing Units

Description: Colonoscopy is an endoscopic technique that allows a physician to inspect the mucosa of the human colon. Previous methods and software solutions to detect informative frames in a colonoscopy video (a process called informative frame filtering or IFF) have been hugely ineffective in (1) covering the proper definition of an informative frame in the broadest sense and (2) striking an optimal balance between accuracy and speed of classification in both real-time and non real-time medical procedures. In my thesis, I propose a more effective method and faster software solutions for IFF which is more effective due to the introduction of a heuristic algorithm (derived from experimental analysis of typical colon features) for classification. It contributed to a 5-10% boost in various performance metrics for IFF. The software modules are faster due to the incorporation of sophisticated parallel-processing oriented coding techniques on modern microprocessors. Two IFF modules were created, one for post-procedure and the other for real-time. Code optimizations through NVIDIA CUDA for GPU processing and/or CPU multi-threading concepts embedded in two significant microprocessor design philosophies (multi-core design and many-core design) resulted a 5-fold acceleration for the post-procedure module and a 40-fold acceleration for the real-time module. Some innovative software modules, which are still in testing phase, have been recently created to exploit the power of multiple GPUs together.
Date: August 2010
Creator: Karri, Venkata Praveen
Partner: UNT Libraries

Analyzing Microwave Spectra Collected by the Solar Radio Burst Locator

Description: Modern communication systems rely heavily upon microwave, radio, and other electromagnetic frequency bands as a means of providing wireless communication links. Although convenient, wireless communication is susceptible to electromagnetic interference. Solar activity causes both direct interference through electromagnetic radiation as well as indirect interference caused by charged particles interacting with Earth's magnetic field. The Solar Radio Burst Locator (SRBL) is a United States Air Force radio telescope designed to detect and locate solar microwave bursts as they occur on the Sun. By analyzing these events, the Air Force hopes to gain a better understanding of the root causes of solar interference and improve interference forecasts. This thesis presents methods of searching and analyzing events found in the previously unstudied SRBL data archive. A new web-based application aids in the searching and visualization of the data. Comparative analysis is performed amongst data collected by SRBL and several other instruments. This thesis also analyzes events across the time, intensity, and frequency domains. These analysis methods can be used to aid in the detection and understanding of solar events so as to provide improved forecasts of solar-induced electromagnetic interference.
Date: May 2007
Creator: Kincaid, Cheryl-Annette
Partner: UNT Libraries

A Dual Dielectric Approach for Performance Aware Reduction of Gate Leakage in Combinational Circuits

Description: Design of systems in the low-end nanometer domain has introduced new dimensions in power consumption and dissipation in CMOS devices. With continued and aggressive scaling, using low thickness SiO2 for the transistor gates, gate leakage due to gate oxide direct tunneling current has emerged as the major component of leakage in the CMOS circuits. Therefore, providing a solution to the issue of gate oxide leakage has become one of the key concerns in achieving low power and high performance CMOS VLSI circuits. In this thesis, a new approach is proposed involving dual dielectric of dual thicknesses (DKDT) for the reducing both ON and OFF state gate leakage. It is claimed that the simultaneous utilization of SiON and SiO2 each with multiple thicknesses is a better approach for gate leakage reduction than the conventional usage of a single gate dielectric (SiO2), possibly with multiple thicknesses. An algorithm is developed for DKDT assignment that minimizes the overall leakage for a circuit without compromising with the performance. Extensive experiments were carried out on ISCAS'85 benchmarks using 45nm technology which showed that the proposed approach can reduce the leakage, as much as 98% (in an average 89.5%), without degrading the performance.
Date: May 2006
Creator: Mukherjee, Valmiki
Partner: UNT Libraries

Simulink(R) Based Design and Implementation of a Solar Power Based Mobile Charger

Description: Electrical energy is used at approximately the rate of 15 Terawatts world-wide. Generating this much energy has become a primary concern for all nations. There are many ways of generating energy among which the most commonly used are non-renewable and will extinct much sooner than expected. Very active research is going on both to increase the use of renewable energy sources and to use the available energy with more efficiency. Among these sources, solar energy is being considered as the most abundant and has received high attention. The mobile phone has become one of the basic needs of modern life, with almost every human being having one.Individually a mobile phone consumes little power but collectively this becomes very large. This consideration motivated the research undertaken in this masters thesis. The objective of this thesis is to design a model for solar power based charging circuits for mobile phone using Simulink(R). This thesis explains a design procedure of solar power based mobile charger circuit using Simulink(R) which includes the models for the photo-voltaic array, maximum power point tracker, pulse width modulator, DC-DC converter and a battery.The first part of the thesis concentrates on electron level behavior of a solar cell, its structure and its electrical model.The second part is to design an array of solar cells to generate the desired output.Finally, the third part is to design a DC-DC converter which can stabilize and provide the required input to the battery with the help of the maximum power point tracker and pulse width modulation.The obtained DC-DC converter is adjustable to meet the requirements of the battery. This design is aimed at charging a lithium ion battery with nominal voltage of 3.7 V, which can be taken as baseline to charge different types of batteries with different nominal voltages.
Date: May 2016
Creator: Mukka, Manoj Kumar
Partner: UNT Libraries

Simulink Based Modeling of a Multi Global Navigation Satellite System

Description: The objective of this thesis is to design a model for a multi global navigation satellite system using Simulink. It explains a design procedure which includes the models for transmitter and receiver for two different navigation systems. To overcome the problem, where less number of satellites are visible to determine location degrades the performance of any positioning system significantly, this research has done to make use of multi GNSS satellite signals in one navigation receiver.
Date: December 2016
Creator: Mukka, Nagaraju
Partner: UNT Libraries

Region aware DCT domain invisible robust blind watermarking for color images.

Description: The multimedia revolution has made a strong impact on our society. The explosive growth of the Internet, the access to this digital information generates new opportunities and challenges. The ease of editing and duplication in digital domain created the concern of copyright protection for content providers. Various schemes to embed secondary data in the digital media are investigated to preserve copyright and to discourage unauthorized duplication: where digital watermarking is a viable solution. This thesis proposes a novel invisible watermarking scheme: a discrete cosine transform (DCT) domain based watermark embedding and blind extraction algorithm for copyright protection of the color images. Testing of the proposed watermarking scheme's robustness and security via different benchmarks proves its resilience to digital attacks. The detectors response, PSNR and RMSE results show that our algorithm has a better security performance than most of the existing algorithms.
Date: December 2008
Creator: Naraharisetti, Sahasan
Partner: UNT Libraries

Exploring Process-Variation Tolerant Design of Nanoscale Sense Amplifier Circuits

Description: Sense amplifiers are important circuit components of a dynamic random access memory (DRAM), which forms the main memory of digital computers. The ability of the sense amplifier to detect and amplify voltage signals to correctly interpret data in DRAM cells cannot be understated. The sense amplifier plays a significant role in the overall speed of the DRAM. Sense amplifiers require matched transistors for optimal performance. Hence, the effects of mismatch through process variations must be minimized. This thesis presents a research which leads to optimal nanoscale CMOS sense amplifiers by incorporating the effects of process variation early in the design process. The effects of process variation on the performance of a standard voltage sense amplifier, which is used in conventional DRAMs, is studied. Parametric analysis is performed through circuit simulations to investigate which parameters have the most impact on the performance of the sense amplifier. The figures-of-merit (FoMs) used to characterize the circuit are the precharge time, power dissipation, sense delay and sense margin. Statistical analysis is also performed to study the impact of process variations on each FoM. By analyzing the results from the statistical study, a method is presented to select parameter values that minimize the effects of process variation. A design flow algorithm incorporating dual oxide and dual threshold voltage based techniques is used to optimize the FoMs for the sense amplifier. Experimental results prove that the proposed approach improves precharge time by 83.9%, sense delay by 80.2% sense margin by 61.9%, and power dissipation by 13.1%.
Date: December 2010
Creator: Okobiah, Oghenekarho
Partner: UNT Libraries

CMOS Active Pixel Sensors for Digital Cameras: Current State-of-the-Art

Description: Image sensors play a vital role in many image sensing and capture applications. Among the various types of image sensors, complementary metal oxide semiconductor (CMOS) based active pixel sensors (APS), which are characterized by reduced pixel size, give fast readouts and reduced noise. APS are used in many applications such as mobile cameras, digital cameras, Webcams, and many consumer, commercial and scientific applications. With these developments and applications, CMOS APS designs are challenging the old and mature technology of charged couple device (CCD) sensors. With the continuous improvements of APS architecture, pixel designs, along with the development of nanometer CMOS fabrications technologies, APS are optimized for optical sensing. In addition, APS offers very low-power and low-voltage operations and is suitable for monolithic integration, thus allowing manufacturers to integrate more functionality on the array and building low-cost camera-on-a-chip. In this thesis, I explore the current state-of-the-art of CMOS APS by examining various types of APS. I show design and simulation results of one of the most commonly used APS in consumer applications, i.e. photodiode based APS. We also present an approach for technology scaling of the devices in photodiode APS to present CMOS technologies. Finally, I present the most modern CMOS APS technologies by reviewing different design models. The design of the photodiode APS is implemented using commercial CAD tools.
Date: May 2007
Creator: Palakodety, Atmaram
Partner: UNT Libraries

Occlusion Tolerant Object Recognition Methods for Video Surveillance and Tracking of Moving Civilian Vehicles

Description: Recently, there is a great interest in moving object tracking in the fields of security and surveillance. Object recognition under partial occlusion is the core of any object tracking system. This thesis presents an automatic and real-time color object-recognition system which is not only robust but also occlusion tolerant. The intended use of the system is to recognize and track external vehicles entered inside a secured area like a school campus or any army base. Statistical morphological skeleton is used to represent the visible shape of the vehicle. Simple curve matching and different feature based matching techniques are used to recognize the segmented vehicle. Features of the vehicle are extracted upon entering the secured area. The vehicle is recognized from either a digital video frame or a static digital image when needed. The recognition engine will help the design of a high performance tracking system meant for remote video surveillance.
Date: December 2007
Creator: Pati, Nishikanta
Partner: UNT Libraries

Energy-Aware Time Synchronization in Wireless Sensor Networks

Description: I present a time synchronization algorithm for wireless sensor networks that aims to conserve sensor battery power. The proposed method creates a hierarchical tree by flooding the sensor network from a designated source point. It then uses a hybrid algorithm derived from the timing-sync protocol for sensor networks (TSPN) and the reference broadcast synchronization method (RBS) to periodically synchronize sensor clocks by minimizing energy consumption. In multi-hop ad-hoc networks, a depleted sensor will drop information from all other sensors that route data through it, decreasing the physical area being monitored by the network. The proposed method uses several techniques and thresholds to maintain network connectivity. A new root sensor is chosen when the current one's battery power decreases to a designated value. I implement this new synchronization technique using Matlab and show that it can provide significant power savings over both TPSN and RBS.
Date: December 2006
Creator: Saravanos, Yanos
Partner: UNT Libraries

Design and Optimization of Components in a 45nm CMOS Phase Locked Loop

Description: A novel scheme of optimizing the individual components of a phase locked loop (PLL) which is used for stable clock generation and synchronization of signals is considered in this work. Verilog-A is used for the high level system design of the main components of the PLL, followed by the individual component wise optimization. The design of experiments (DOE) approach to optimize the analog, 45nm voltage controlled oscillator (VCO) is presented. Also a mixed signal analysis using the analog and digital Verilog behavior of components is studied. Overall a high level system design of a PLL, a systematic optimization of each of its components, and an analog and mixed signal behavioral design approach have been implemented using cadence custom IC design tools.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2006
Creator: Sarivisetti, Gayathri
Partner: UNT Libraries

Effects of UE Speed on MIMO Channel Capacity in LTE

Description: With the introduction of 4G LTE, multiple new technologies were introduced. MIMO is one of the important technologies introduced with fourth generation. The main MIMO modes used in LTE are open loop and closed loop spatial multiplexing modes. This thesis develops an algorithm to calculate the threshold values of UE speed and SNR that is required to implement a switching algorithm which can switch between different MIMO modes for a UE based on the speed and channel conditions (CSI). Specifically, this thesis provides the values of UE speed and SNR at which we can get better results by switching between open loop and closed loop MIMO modes and then be scheduled in sub-channels accordingly. Thus, the results can be used effectively to get better channel capacity with less ISI. The main objectives of this thesis are: to determine the type of MIMO mode suitable for a UE with certain speed, to determine the effects of SNR on selection of MIMO modes, and to design and implement a scheduling algorithm to enhance channel capacity.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Shukla, Rahul
Partner: UNT Libraries

A CAM-Based, High-Performance Classifier-Scheduler for a Video Network Processor.

Description: Classification and scheduling are key functionalities of a network processor. Network processors are equipped with application specific integrated circuits (ASIC), so that as IP (Internet Protocol) packets arrive, they can be processed directly without using the central processing unit. A new network processor is proposed called the video network processor (VNP) for real time broadcasting of video streams for IP television (IPTV). This thesis explores the challenge in designing a combined classification and scheduling module for a VNP. I propose and design the classifier-scheduler module which will classify and schedule data for VNP. The proposed module discriminates between IP packets and video packets. The video packets are further processed for digital rights management (DRM). IP packets which carry regular traffic will traverse without any modification. Basic architecture of VNP and architecture of classifier-scheduler module based on content addressable memory (CAM) and random access memory (RAM) has been proposed. The module has been designed and simulated in Xilinx 9.1i; is built in ISE simulator with a throughput of 1.79 Mbps and a maximum working frequency of 111.89 MHz at a power dissipation of 33.6mW. The code has been translated and mapped for Spartan and Virtex family of devices.
Date: May 2008
Creator: Tarigopula, Srivamsi
Partner: UNT Libraries

An Accelerometer-based Gesture Recognition System for a Tactical Communications Application

Description: In modern society, computers are primarily interacted with via keyboards, touch screens, voice recognition, video analysis, and many others. For certain applications, these methods may be the most efficient interface. However, there are applications that we can conceive where a more natural interface could be convenient and connect humans and computers in a more intuitive and natural way. These applications are gesture recognition systems and range from the interpretation of sign language by a computer to virtual reality control. This Thesis proposes a gesture recognition system that primarily uses accelerometers to capture gestures from a tactical communications application. A segmentation algorithm is developed based on the accelerometer energy to segment these gestures from an input sequence. Using signal processing and machine learning techniques, the segments are reduced to mathematical features and classified with support vector machines. Experimental results show that the system achieves an overall gesture recognition accuracy of 98.9%. Additional methods, such as non-gesture recognition/suppression, are also proposed and tested.
Date: December 2015
Creator: Tidwell Jr., Robert S.
Partner: UNT Libraries

A Vehicle-collision Learning System Using Driving Patterns on the Road

Description: Demand of automobiles are significantly growing despite various factors, steadily increasing the average number of vehicles on the road. Increase in the number of vehicles, subsequently increases the risk of collisions, characterized by the driving behavior. Driving behavior is influenced by factors like class of vehicle, road condition and vehicle maneuvering by the driver. Rapidly growing mobile technology and use of smartphones embedded with in-built sensors, provides scope of constant development of assistance systems considering the safety of the driver by integrating with the information obtained from the vehicle on-board sensors. Our research aims at learning a vehicle system comprising of vehicle, human and road by employing driving patterns obtained from the sensor data to develop better systems of safety and alerts altogether. The thesis focusses on utilizing together various data recorded by the in-built embedded sensors in a smartphone to understand the vehicle motion and dynamics, followed by studying various impacts of collision events, types and signatures which can potentially be integrated in a prototype framework to detect variations, alert drivers and emergency responders in an event of collision.
Date: August 2013
Creator: Urs, Chaitra Vijaygopalraj
Partner: UNT Libraries

A nano-CMOS based universal voltage level converter for multi-VDD SoCs.

Description: Power dissipation of integrated circuits is the most demanding issue for very large scale integration (VLSI) design engineers, especially for portable and mobile applications. Use of multiple supply voltages systems, which employs level converter between two voltage islands is one of the most effective ways to reduce power consumption. In this thesis work, a unique level converter known as universal level converter (ULC), capable of four distinct level converting operations, is proposed. The schematic and layout of ULC are built and simulated using CADENCE. The ULC is characterized by performing three analysis such as parametric, power, and load analysis which prove that the design has an average power consumption reduction of about 85-97% and capable of producing stable output at low voltages like 0.45V even under varying load conditions.
Date: May 2007
Creator: Vadlmudi, Tripurasuparna
Partner: UNT Libraries