UNT Theses and Dissertations - 78 Matching Results

Search Results

Extracting Useful Information from Social Media during Disaster Events

Description: In recent years, social media platforms such as Twitter and Facebook have emerged as effective tools for broadcasting messages worldwide during disaster events. With millions of messages posted through these services during such events, it has become imperative to identify valuable information that can help the emergency responders to develop effective relief efforts and aid victims. Many studies implied that the role of social media during disasters is invaluable and can be incorporated into emergency decision-making process. However, due to the "big data" nature of social media, it is very labor-intensive to employ human resources to sift through social media posts and categorize/classify them as useful information. Hence, there is a growing need for machine intelligence to automate the process of extracting useful information from the social media data during disaster events. This dissertation addresses the following questions: In a social media stream of messages, what is the useful information to be extracted that can help emergency response organizations to become more situationally aware during and following a disaster? What are the features (or patterns) that can contribute to automatically identifying messages that are useful during disasters? We explored a wide variety of features in conjunction with supervised learning algorithms to automatically identify messages that are useful during disaster events. The feature design includes sentiment features to extract the geo-mapped sentiment expressed in tweets, as well as tweet-content and user detail features to predict the likelihood of the information contained in a tweet to be quickly spread in the network. Further experimentation is carried out to see how these features help in identifying the informative tweets and filter out those tweets that are conversational in nature.
Date: May 2017
Creator: Neppalli, Venkata Kishore
Partner: UNT Libraries

Data-Driven Decision-Making Framework for Large-Scale Dynamical Systems under Uncertainty

Description: Managing large-scale dynamical systems (e.g., transportation systems, complex information systems, and power networks, etc.) in real-time is very challenging considering their complicated system dynamics, intricate network interactions, large scale, and especially the existence of various uncertainties. To address this issue, intelligent techniques which can quickly design decision-making strategies that are robust to uncertainties are needed. This dissertation aims to conquer these challenges by exploring a data-driven decision-making framework, which leverages big-data techniques and scalable uncertainty evaluation approaches to quickly solve optimal control problems. In particular, following techniques have been developed along this direction: 1) system modeling approaches to simplify the system analysis and design procedures for multiple applications; 2) effective simulation and analytical based approaches to efficiently evaluate system performance and design control strategies under uncertainty; and 3) big-data techniques that allow some computations of control strategies to be completed offline. These techniques and tools for analysis, design and control contribute to a wide range of applications including air traffic flow management, complex information systems, and airborne networks.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2016
Creator: Xie, Junfei
Partner: UNT Libraries

Modeling and Simulation of the Vector-Borne Dengue Disease and the Effects of Regional Variation of Temperature in the Disease Prevalence in Homogenous and Heterogeneous Human Populations

Description: The history of mitigation programs to contain vector-borne diseases is a story of successes and failures. Due to the complex interplay among multiple factors that determine disease dynamics, the general principles for timely and specific intervention for incidence reduction or eradication of life-threatening diseases has yet to be determined. This research discusses computational methods developed to assist in the understanding of complex relationships affecting vector-borne disease dynamics. A computational framework to assist public health practitioners with exploring the dynamics of vector-borne diseases, such as malaria and dengue in homogenous and heterogeneous populations, has been conceived, designed, and implemented. The framework integrates a stochastic computational model of interactions to simulate horizontal disease transmission. The intent of the computational modeling has been the integration of stochasticity during simulation of the disease progression while reducing the number of necessary interactions to simulate a disease outbreak. While there are improvements in the computational time reducing the number of interactions needed for simulating disease dynamics, the realization of interactions can remain computationally expensive. Using multi-threading technology to improve performance upon the original computational model, multi-threading experimental results have been tested and reported. In addition, to the contact model, the modeling of biological processes specific to the corresponding pathogen-carrier vector to increase the specificity of the vector-borne disease has been integrated. Last, automation for requesting, retrieving, parsing, and storing specific weather data and geospatial information from federal agencies to study the differences between homogenous and heterogeneous populations has been implemented.
Date: August 2016
Creator: Bravo-Salgado, Angel D
Partner: UNT Libraries

Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

Description: There are several types of disorders that affect our colon’s ability to function properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel syndrome and colonic polyps. Automatic detection of these diseases would inform the endoscopist of possible sub-optimal inspection during the colonoscopy procedure as well as save time during post-procedure evaluation. But existing systems only detects few of those disorders like colonic polyps. In this dissertation, we address the automatic detection of another important disorder called ulcerative colitis. We propose a novel texture feature extraction technique to detect the severity of ulcerative colitis in block, image, and video levels. We also enhance the current informative frame filtering methods by detecting water and bubble frames using our proposed technique. Our feature extraction algorithm based on accumulation of pixel value difference provides better accuracy at faster speed than the existing methods making it highly suitable for real-time systems. We also propose a hybrid approach in which our feature method is combined with existing feature method(s) to provide even better accuracy. We extend the block and image level detection method to video level severity score calculation and shot segmentation. Also, the proposed novel feature extraction method can detect water and bubble frames in colonoscopy videos with very high accuracy in significantly less processing time even when clustering is used to reduce the training size by 10 times.
Date: December 2015
Creator: Dahal, Ashok
Partner: UNT Libraries

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Description: Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of efficiently discovering non-causal factors are developed and proved. In addition, when the background knowledge is partially known, methods of graph decomposition are provided so as to reduce the number of conditioned variables. Experiments on both synthetic data and real epidemiological data indicate the provided methods are applicable to large-scale datasets and scalable for causal analysis in health data. Followed by the research methods and experiments, this dissertation gives thoughtful discussions on the reliability of causal discoveries computational health science research, complexity, and implications in health science research.
Date: August 2015
Creator: Liang, Yiheng
Partner: UNT Libraries

Computational Methods for Vulnerability Analysis and Resource Allocation in Public Health Emergencies

Description: POD (Point of Dispensing)-based emergency response plans involving mass prophylaxis may seem feasible when considering the choice of dispensing points within a region, overall population density, and estimated traffic demands. However, the plan may fail to serve particular vulnerable sub-populations, resulting in access disparities during emergency response. Federal authorities emphasize on the need to identify sub-populations that cannot avail regular services during an emergency due to their special needs to ensure effective response. Vulnerable individuals require the targeted allocation of appropriate resources to serve their special needs. Devising schemes to address the needs of vulnerable sub-populations is essential for the effectiveness of response plans. This research focuses on data-driven computational methods to quantify and address vulnerabilities in response plans that require the allocation of targeted resources. Data-driven methods to identify and quantify vulnerabilities in response plans are developed as part of this research. Addressing vulnerabilities requires the targeted allocation of appropriate resources to PODs. The problem of resource allocation to PODs during public health emergencies is introduced and the variants of the resource allocation problem such as the spatial allocation, spatio-temporal allocation and optimal resource subset variants are formulated. Generating optimal resource allocation and scheduling solutions can be computationally hard problems. The application of metaheuristic techniques to find near-optimal solutions to the resource allocation problem in response plans is investigated. A vulnerability analysis and resource allocation framework that facilitates the demographic analysis of population data in the context of response plans, and the optimal allocation of resources with respect to the analysis are described.
Date: August 2015
Creator: Indrakanti, Saratchandra
Partner: UNT Libraries

Investigation on Segmentation, Recognition and 3D Reconstruction of Objects Based on LiDAR Data Or MRI

Description: Segmentation, recognition and 3D reconstruction of objects have been cutting-edge research topics, which have many applications ranging from environmental and medical to geographical applications as well as intelligent transportation. In this dissertation, I focus on the study of segmentation, recognition and 3D reconstruction of objects using LiDAR data/MRI. Three main works are that (I). Feature extraction algorithm based on sparse LiDAR data. A novel method has been proposed for feature extraction from sparse LiDAR data. The algorithm and the related principles have been described. Also, I have tested and discussed the choices and roles of parameters. By using correlation of neighboring points directly, statistic distribution of normal vectors at each point has been effectively used to determine the category of the selected point. (II). Segmentation and 3D reconstruction of objects based on LiDAR/MRI. The proposed method includes that the 3D LiDAR data are layered, that different categories are segmented, and that 3D canopy surfaces of individual tree crowns and clusters of trees are reconstructed from LiDAR point data based on a region active contour model. The proposed method allows for delineations of 3D forest canopy naturally from the contours of raw LiDAR point clouds. The proposed model is suitable not only for a series of ideal cone shapes, but also for other kinds of 3D shapes as well as other kinds dataset such as MRI. (III). Novel algorithms for recognition of objects based on LiDAR/MRI. Aimed to the sparse LiDAR data, the feature extraction algorithm has been proposed and applied to classify the building and trees. More importantly, the novel algorithms based on level set methods have been provided and employed to recognize not only the buildings and trees, the different trees (e.g. Oak trees and Douglas firs), but also the subthalamus nuclei (STNs). By using the novel algorithms based ...
Date: May 2015
Creator: Tang, Shijun
Partner: UNT Libraries

SEM Predicting Success of Student Global Software Development Teams

Description: The extensive use of global teams to develop software has prompted researchers to investigate various factors that can enhance a team’s performance. While a significant body of research exists on global software teams, previous research has not fully explored the interrelationships and collective impact of various factors on team performance. This study explored a model that added the characteristics of a team’s culture, ability, communication frequencies, response rates, and linguistic categories to a central framework of team performance. Data was collected from two student software development projects that occurred between teams located in the United States, Panama, and Turkey. The data was obtained through online surveys and recorded postings of team activities that occurred throughout the global software development projects. Partial least squares path modeling (PLS-PM) was chosen as the analytic technique to test the model and identify the most influential factors. Individual factors associated with response rates and linguistic characteristics proved to significantly affect a team’s activity related to grade on the project, group cohesion, and the number of messages received and sent. Moreover, an examination of possible latent homogeneous segments in the model supported the existence of differences among groups based on leadership style. Teams with assigned leaders tended to have stronger relationships between linguistic characteristics and team performance factors, while teams with emergent leaders had stronger. Relationships between response rates and team performance factors. The contributions in this dissertation are three fold. 1) Novel analysis techniques using PLS-PM and clustering, 2) Use of new, quantifiable variables in analyzing team activity, 3) Identification of plausible causal indicators for team performance and analysis of the same.
Date: May 2015
Creator: Brooks, Ian Robert
Partner: UNT Libraries

Video Analytics with Spatio-Temporal Characteristics of Activities

Description: As video capturing devices become more ubiquitous from surveillance cameras to smart phones, the demand of automated video analysis is increasing as never before. One obstacle in this process is to efficiently locate where a human operator’s attention should be, and another is to determine the specific types of activities or actions without ambiguity. It is the special interest of this dissertation to locate spatial and temporal regions of interest in videos and to develop a better action representation for video-based activity analysis. This dissertation follows the scheme of “locating then recognizing” activities of interest in videos, i.e., locations of potentially interesting activities are estimated before performing in-depth analysis. Theoretical properties of regions of interest in videos are first exploited, based on which a unifying framework is proposed to locate both spatial and temporal regions of interest with the same settings of parameters. The approach estimates the distribution of motion based on 3D structure tensors, and locates regions of interest according to persistent occurrences of low probability. Two contributions are further made to better represent the actions. The first is to construct a unifying model of spatio-temporal relationships between reusable mid-level actions which bridge low-level pixels and high-level activities. Dense trajectories are clustered to construct mid-level actionlets, and the temporal relationships between actionlets are modeled as Action Graphs based on Allen interval predicates. The second is an effort for a novel and efficient representation of action graphs based on a sparse coding framework. Action graphs are first represented using Laplacian matrices and then decomposed as a linear combination of primitive dictionary items following sparse coding scheme. The optimization is eventually formulated and solved as a determinant maximization problem, and 1-nearest neighbor is used for action classification. The experiments have shown better results than existing approaches for regions-of-interest detection and action ...
Date: May 2015
Creator: Cheng, Guangchun
Partner: UNT Libraries

An Adaptive Linearization Method for a Constraint Satisfaction Problem in Semiconductor Device Design Optimization

Description: The device optimization is a very important element in semiconductor technology advancement. Its objective is to find a design point for a semiconductor device so that the optimized design goal meets all specified constraints. As in other engineering fields, a nonlinear optimizer is often used for design optimization. One major drawback of using a nonlinear optimizer is that it can only partially explore the design space and return a local optimal solution. This dissertation provides an adaptive optimization design methodology to allow the designer to explore the design space and obtain a globally optimal solution. One key element of our method is to quickly compute the set of all feasible solutions, also called the acceptability region. We described a polytope-based representation for the acceptability region and an adaptive linearization technique for device performance model approximation. These efficiency enhancements have enabled significant speed-up in estimating acceptability regions and allow acceptability regions to be estimated for a larger class of device design tasks. Our linearization technique also provides an efficient mechanism to guarantee the global accuracy of the computed acceptability region. To visualize the acceptability region, we study the orthogonal projection of high-dimensional convex polytopes and propose an output sensitive algorithm for projecting polytopes into two dimensions.
Date: May 1999
Creator: Chang, Chih-Hui, 1967-
Partner: UNT Libraries

Autonomic Failure Identification and Diagnosis for Building Dependable Cloud Computing Systems

Description: The increasingly popular cloud-computing paradigm provides on-demand access to computing and storage with the appearance of unlimited resources. Users are given access to a variety of data and software utilities to manage their work. Users rent virtual resources and pay for only what they use. In spite of the many benefits that cloud computing promises, the lack of dependability in shared virtualized infrastructures is a major obstacle for its wider adoption, especially for mission-critical applications. Virtualization and multi-tenancy increase system complexity and dynamicity. They introduce new sources of failure degrading the dependability of cloud computing systems. To assure cloud dependability, in my dissertation research, I develop autonomic failure identification and diagnosis techniques that are crucial for understanding emergent, cloud-wide phenomena and self-managing resource burdens for cloud availability and productivity enhancement. We study the runtime cloud performance data collected from a cloud test-bed and by using traces from production cloud systems. We define cloud signatures including those metrics that are most relevant to failure instances. We exploit profiled cloud performance data in both time and frequency domain to identify anomalous cloud behaviors and leverage cloud metric subspace analysis to automate the diagnosis of observed failures. We implement a prototype of the anomaly identification system and conduct the experiments in an on-campus cloud computing test-bed and by using the Google datacenter traces. Our experimental results show that our proposed anomaly detection mechanism can achieve 93% detection sensitivity while keeping the false positive rate as low as 6.1% and outperform other tested anomaly detection schemes. In addition, the anomaly detector adapts itself by recursively learning from these newly verified detection results to refine future detection.
Date: May 2014
Creator: Guan, Qiang
Partner: UNT Libraries

Performance Engineering of Software Web Services and Distributed Software Systems

Description: The promise of service oriented computing, and the availability of Web services promote the delivery and creation of new services based on existing services, in order to meet new demands and new markets. As Web and internet based services move into Clouds, inter-dependency of services and their complexity will increase substantially. There are standards and frameworks for specifying and composing Web Services based on functional properties. However, mechanisms to individually address non-functional properties of services and their compositions have not been well established. Furthermore, the Cloud ontology depicts service layers from a high-level, such as Application and Software, to a low-level, such as Infrastructure and Platform. Each component that resides in one layer can be useful to another layer as a service. It hints at the amount of complexity resulting from not only horizontal but also vertical integrations in building and deploying a composite service. To meet the requirements and facilitate using Web services, we first propose a WSDL extension to permit specification of non-functional or Quality of Service (QoS) properties. On top of the foundation, the QoS-aware framework is established to adapt publicly available tools for Web services, augmented by ontology management tools, along with tools for performance modeling to exemplify how the non-functional properties such as response time, throughput, or utilization of services can be addressed in the service acquisition and composition process. To facilitate Web service composition standards, in this work we extended the framework with additional qualitative information to the service descriptions using Business Process Execution Language (BPEL). Engineers can use BPEL to explore design options, and have the QoS properties analyzed for the composite service. The main issue in our research is performance evaluation in software system and engineering. We researched the Web service computation as the first half of this dissertation, and performance antipattern ...
Date: May 2014
Creator: Lin, Chia-en
Partner: UNT Libraries

Multilingual Word Sense Disambiguation Using Wikipedia

Description: Ambiguity is inherent to human language. In particular, word sense ambiguity is prevalent in all natural languages, with a large number of the words in any given language carrying more than one meaning. Word sense disambiguation is the task of automatically assigning the most appropriate meaning to a polysemous word within a given context. Generally the problem of resolving ambiguity in literature has revolved around the famous quote “you shall know the meaning of the word by the company it keeps.” In this thesis, we investigate the role of context for resolving ambiguity through three different approaches. Instead of using a predefined monolingual sense inventory such as WordNet, we use a language-independent framework where the word senses and sense-tagged data are derived automatically from Wikipedia. Using Wikipedia as a source of sense-annotations provides the much needed solution for knowledge acquisition bottleneck. In order to evaluate the viability of Wikipedia based sense-annotations, we cast the task of disambiguating polysemous nouns as a monolingual classification task and experimented on lexical samples from four different languages (viz. English, German, Italian and Spanish). The experiments confirm that the Wikipedia based sense annotations are reliable and can be used to construct accurate monolingual sense classifiers. It is a long belief that exploiting multiple languages helps in building accurate word sense disambiguation systems. Subsequently, we developed two approaches that recast the task of disambiguating polysemous nouns as a multilingual classification task. The first approach for multilingual word sense disambiguation attempts to effectively use a machine translation system to leverage two relevant multilingual aspects of the semantics of text. First, the various senses of a target word may be translated into different words, which constitute unique, yet highly salient signal that effectively expand the target word’s feature space. Second, the translated context words themselves embed co-occurrence information ...
Date: August 2013
Creator: Dandala, Bharath
Partner: UNT Libraries

Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator

Description: Software applications’ performance is hindered by a variety of factors, but most notably by the well-known CPU-memory speed gap (often known as the memory wall). This results in the CPU sitting idle waiting for data to be brought from memory to processor caches. The addressing used by caches cause non-uniform accesses to various cache sets. The non-uniformity is due to several reasons, including how different objects are accessed by the code and how the data objects are located in memory. Memory allocators determine where dynamically created objects are placed, thus defining addresses and their mapping to cache locations. It is important to evaluate how different allocators behave with respect to the localities of the created objects. Most allocators use a single attribute, the size, of an object in making allocation decisions. Additional attributes such as the placement with respect to other objects, or specific cache area may lead to better use of cache memories. In this dissertation, we proposed and implemented a framework that allows for the development and evaluation of new memory allocation techniques. At the root of the framework is a memory tracing tool called Gleipnir, which provides very detailed information about every memory access, and relates it back to source level objects. Using the traces from Gleipnir, we extended a commonly used cache simulator for generating detailed cache statistics: per function, per data object, per cache line, and identify specific data objects that are conflicting with each other. The utility of the framework is demonstrated with a new memory allocator known as equivalence class allocator. The new allocator allows users to specify cache sets, in addition to object size, where the objects should be placed. We compare this new allocator with two well-known allocators, viz., Doug Lea and Pool allocators.
Date: August 2013
Creator: Janjusic, Tomislav
Partner: UNT Libraries

Modeling and Analysis of Next Generation 9-1-1 Emergency Medical Dispatch Protocols

Description: Emergency Medical Dispatch Protocols are guidelines that a 9-1-1 dispatcher uses to evaluate the nature of emergency, resources to send and the nature of help provided to the 9-1-1 caller. The current Dispatch Protocols are based on voice only call. But the Next Generation 9-1-1 (NG9-1-1) architecture will allow multimedia emergency calls. In this thesis I analyze and model the Emergency Medical Dispatch Protocols for NG9-1-1 architecture. I have identified various technical aspects to improve the NG9-1-1 Dispatch Protocols. The devices (smartphone) at the caller end have advanced to a point where they can be used to send and receive video, pictures and text. There are sensors embedded in them that can be used for initial diagnosis of the injured person. There is a need to improve the human computer (smartphone) interface to take advantage of technology so that callers can easily make use of various features available to them. The dispatchers at the 9-1-1 call center can make use of these new protocols to improve the quality and the response time. They will have capability of multiple media streams to interact with the caller and the first responders.The specific contributions in this thesis include developing applications that use smartphone sensors. The CPR application uses the smartphone to help administer effective CPR even if the person is not trained. The application makes the CPR process closed loop, i.e., the person who administers the CPR as well as the 9-1-1 operator receive feedback and prompt from the application about the correctness of the CPR. The breathing application analyzes the quality of breathing of the affected person and automatically sends the information to the 9-1-1 operator. In order to improve the Human Computer Interface at the caller and the operator end, I have analyzed Fitts law and extended it so that it ...
Date: August 2013
Creator: Gupta, Neeraj Kant
Partner: UNT Libraries

Real-time Rendering of Burning Objects in Video Games

Description: In recent years there has been growing interest in limitless realism in computer graphics applications. Among those, my foremost concentration falls into the complex physical simulations and modeling with diverse applications for the gaming industry. Different simulations have been virtually successful by replicating the details of physical process. As a result, some were strong enough to lure the user into believable virtual worlds that could destroy any sense of attendance. In this research, I focus on fire simulations and its deformation process towards various virtual objects. In most game engines model loading takes place at the beginning of the game or when the game is transitioning between levels. Game models are stored in large data structures. Since changing or adjusting a large data structure while the game is proceeding may adversely affect the performance of the game. Therefore, developers may choose to avoid procedural simulations to save resources and avoid interruptions on performance. I introduce a process to implement a real-time model deformation while maintaining performance. It is a challenging task to achieve high quality simulation while utilizing minimum resources to represent multiple events in timely manner. Especially in video games, this overwhelming criterion would be robust enough to sustain the engaging player's willing suspension of disbelief. I have implemented and tested my method on a relatively modest GPU using CUDA. My experiments conclude this method gives a believable visual effect while using small fraction of CPU and GPU resources.
Date: August 2013
Creator: Amarasinghe, Dhanyu Eshaka
Partner: UNT Libraries

Boosting for Learning From Imbalanced, Multiclass Data Sets

Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared to several state-of-the-art algorithms for imbalanced, multi-class classification problems. More importantly, the sensitivity improvement of the minority classes using RegBoost is accompanied with the improvement of the overall accuracy for all classes. With unpredictability regularization, a diverse group of classifiers are created and the maximum accuracy improvement reaches above 24%. Using stratified undersampling, RegBoost exhibits the best efficiency. The reduction in computational cost is significant reaching above 50%. As the volume of training data increase, the gain of efficiency with the proposed method becomes more significant.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2013
Creator: Abouelenien, Mohamed
Partner: UNT Libraries

Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics

Description: The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk groups of specific characteristics and devise containment strategies that facilitate health authorities to improve mitigation strategies.
Date: December 2013
Creator: Gomez-Lopez, Iris Nelly
Partner: UNT Libraries

Independent Quadtrees

Description: This dissertation deals with the problem of manipulating and storing an image using quadtrees. A quadtree is a tree in which each node has four ordered children or is a leaf. It can be used to represent an image via hierarchical decomposition. The image is broken into four regions. A region can be a solid color (homogeneous) or a mixture of colors (heterogeneous). If a region is heterogeneous it is broken into four subregions, and the process continues recursively until all subregions are homogeneous. The traditional quadtree suffers from dependence on the underlying grid. The grid coordinate system is implicit, and therefore fixed. The fixed coordinate system implies a rigid tree. A rigid tree cannot be translated, scaled, or rotated. Instead, a new tree must be built which is the result of one of these transformations. This dissertation introduces the independent quadtree. The independent quadtree is free of any underlying coordinate system. The tree is no longer rigid and can be easily translated, scaled, or rotated. Algorithms to perform these operations axe presented. The translation and rotation algorithms take constant time. The scaling algorithm has linear time in the number nodes in the tree. The disadvantage of independent quadtrees is the longer generation and display time. This dissertation also introduces an alternate method of hierarchical decomposition. This new method finds the largest homogeneous block with respect to the corners of the image. This block defines the division point for the decomposition. If the size of the block is below some cutoff point, it is deemed to be to small to make the overhead worthwhile and the traditional method is used instead. This new method is compared to the traditional method on randomly generated rectangles, triangles, and circles. The new method is shown to use significantly less space for all three ...
Date: December 1986
Creator: Atwood, Larry D. (Larry Dale)
Partner: UNT Libraries

A Comparative Analysis of Guided vs. Query-Based Intelligent Tutoring Systems (ITS) Using a Class-Entity-Relationship-Attribute (CERA) Knowledge Base

Description: One of the greatest problems facing researchers in the sub field of Artificial Intelligence known as Intelligent Tutoring Systems (ITS) is the selection of a knowledge base designs that will facilitate the modification of the knowledge base. The Class-Entity-Relationship-Attribute (CERA), proposed by R. P. Brazile, holds certain promise as a more generic knowledge base design framework upon which can be built robust and efficient ITS. This study has a twofold purpose. The first is to demonstrate that a CERA knowledge base can be constructed for an ITS on a subset of the domain of Cretaceous paleontology and function as the "expert module" of the ITS. The second is to test the validity of the ideas that students guided through a lesson learn more factual knowledge, while those who explore the knowledge base that underlies the lesson through query at their own pace will be able to formulate their own integrative knowledge from the knowledge gained in their explorations and spend more time on the system. This study concludes that a CERA-based system can be constructed as an effective teaching tool. However, while an ITS - treatment provides for statistically significant gains in achievement test scores, the type of treatment seems not to matter as much as time spent on task. This would seem to indicate that a query-based system which allows the user to progress at their own pace would be a better type of system for the presentation of material due to the greater amount of on-line computer time exhibited by the users.
Date: August 1987
Creator: Hall, Douglas Lee
Partner: UNT Libraries

Speech Recognition Using a Synthesized Codebook

Description: Speech sounds generated by a simple waveform synthesizer were used to create a vector quantization codebook for use in speech recognition. Recognition was tested over the TI-20 isolated word data base using a conventional DTW matching algorithm. Input speech was band limited to 300 - 3300 Hz, then passed through the Scott Instruments Corp. Coretechs process, implemented on a VET3 speech terminal, to create the speech representation for matching. Synthesized sounds were processed in software by a VET3 signal processing emulation program. Emulation and recognition were performed on a DEC VAX 11/750. The experiments were organized in 2 series. A preliminary experiment, using no vector quantization, provided a baseline for comparison. The original codebook contained 109 vectors, all derived from 2 formant synthesized sounds. This codebook was decimated through the course of the first series of experiments, based on the number of times each vector was used in quantizing the training data for the previous experiment, in order to determine the smallest subset of vectors suitable for coding the speech data base. The second series of experiments altered several test conditions in order to evaluate the applicability of the minimal synthesized codebook to conventional codebook training. The baseline recognition rate was 97%. The recognition rate for synthesized codebooks was approximately 92% for sizes ranging from 109 to 16 vectors. Accuracy for smaller codebooks was slightly less than 90%. Error analysis showed that the primary loss in dropping below 16 vectors was in coding of voiced sounds with high frequency second formants. The 16 vector synthesized codebook was chosen as the seed for the second series of experiments. After one training iteration, and using a normalized distortion score, trained codebooks performed with an accuracy of 95.1%. When codebooks were trained and tested on different sets of speakers, accuracy was 94.9%, indicating ...
Date: August 1988
Creator: Smith, Lloyd A. (Lloyd Allen)
Partner: UNT Libraries

Computer Realization of Human Music Cognition

Description: This study models the human process of music cognition on the digital computer. The definition of music cognition is derived from the work in music cognition done by the researchers Carol Krumhansl and Edward Kessler, and by Mari Jones, as well as from the music theories of Heinrich Schenker. The computer implementation functions in three stages. First, it translates a musical "performance" in the form of MIDI (Musical Instrument Digital Interface) messages into LISP structures. Second, the various parameters of the performance are examined separately a la Jones's joint accent structure, quantified according to psychological findings, and adjusted to a common scale. The findings of Krumhansl and Kessler are used to evaluate the consonance of each note with respect to the key of the piece and with respect to the immediately sounding harmony. This process yields a multidimensional set of points, each of which is a cognitive evaluation of a single musical event within the context of the piece of music within which it occurred. This set of points forms a metric space in multi-dimensional Euclidean space. The third phase of the analysis maps the set of points into a topology-preserving data structure for a Schenkerian-like middleground structural analysis. This process yields a hierarchical stratification of all the musical events (notes) in a piece of music. It has been applied to several pieces of music with surprising results. In each case, the analysis obtained very closely resembles a structural analysis which would be supplied by a human theorist. The results obtained invite us to take another look at the representation of knowledge and perception from another perspective, that of a set of points in a topological space, and to ask if such a representation might not be useful in other domains. It also leads us to ask if such a ...
Date: August 1988
Creator: Albright, Larry E. (Larry Eugene)
Partner: UNT Libraries

Inheritance Problems in Object-Oriented Database

Description: This research is concerned with inheritance as used in object-oriented database. More specifically, partial bi-directional inheritance among classes is examined. In partial inheritance, a class can inherit a proper subset of instance variables from another class. Two subclasses of the same superclass do not need to inherit the same proper subset of instance variables from their superclass. Bi-directional partial inheritance allows a class to inherit instance variables from its subclass. The prototype of an object-oriented database that supports both full and partial bi-directional inheritance among classes was developed on top of an existing relational database management system. The prototype was tested with two database applications. One database application needs full and partial inheritance. The second database application required bi-directional inheritance. The result of this testing suggests both advantages and disadvantages of partial bi-directional inheritance. Future areas of research are also suggested.
Date: May 1989
Creator: Auepanwiriyakul, Raweewan
Partner: UNT Libraries