UNT Theses and Dissertations - Browse

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

The Effect of Natural Gas Well Setback Distance on Drillable Land in the City of Denton, Texas

Description: Municipalities protect human health and environmental resources from impacts of urban natural gas drilling through setback distances; the regulation of distances between well sites and residences, freshwater wells, and other protected uses. Setback distances have increased over time, having the potential to alter the amount and geographical distribution of drillable land within a municipality, thereby having implications for future land use planning and increasing the potential for future incompatible land uses. This study geographically applies a range of setback distances to protected uses and freshwater wells in the city limits of Denton, Texas to investigate the effect on the amount of land remaining for future gas well development and production. Denton lies on the edge of a productive region of the Barnett Shale geological formation, coinciding with a large concentration of drillable land in the southwestern region of the study area. This region will have the greatest potential for impacts to future municipal development and land use planning as a result of future gas well development and higher setback standards. Given the relatively high acreage of drillable land in industrially zoned subcategory IC-G and the concern regarding gas well drilling in more populated areas, future drilling in IC-G, specifically in IC-G land cover classes mowed/grazed/agriculture and herbaceous, would have the least impact on residential uses and tree cover, as well as decreasing the potential for future incompatible land uses.
Date: May 2014
Creator: Daniel, Michael
Partner: UNT Libraries

Measuring Atmospheric Ozone and Nitrogen Dioxide Concentration by Differential Optical Absorption Spectroscopy

Description: The main objective was to develop a procedure based on differential optical absorption spectroscopy (DOAS) to measure atmospheric total column of ozone, using the automated instrument developed at the University of North Texas (UNT) by Nebgen in 2006. This project also explored the ability of this instrument to provide measurements of atmospheric total column nitrogen dioxide. The instrument is located on top of UNT’s Environmental Education, Science and Technology Building. It employs a low cost spectrometer coupled with fiber optics, which are aimed at the sun to collect solar radiation. Measurements taken throughout the day with this instrument exhibited a large variability. The DOAS procedure derives total column ozone from the analysis of daily DOAS Langley plots. This plot relates the measured differential column to the airmass factor. The use of such plots is conditioned by the time the concentration of ozone remains constant. Observations of ozone are typically conducted throughout the day. Observations of total column ozone were conducted for 5 months. Values were derived from both DOAS and Nebgen’s procedure and compared to satellite data. Although differences observed from both procedures to satellite data were similar, the variability found in measurements was reduced from 70 Dobson units, with Nebgen’s procedure, to 4 Dobson units, with the DOAS procedure.A methodology to measure atmospheric nitrogen dioxide using DOAS was also investigated. Although a similar approach to ozone measurements could be applied, it was found that such measurements were limited by the amount of solar radiation collected by the instrument. Observations of nitrogen dioxide are typically conducted near sunrise or sunset, when solar radiation experiences most of the atmospheric absorption.
Date: December 2011
Creator: Jerez, Carlos J.
Partner: UNT Libraries

Photoinduced Toxicity in Early Lifestage Fiddler Crab (Uca Longisignalis) Following Exposure to Deepwater Horizon Spill Oil

Description: The 2010 Deepwater Horizon (DWH) oil spill resulted in a large release of polycyclic aromatic hydrocarbons (PAH) into the Gulf of Mexico. PAH can interact with ultraviolet radiation (UV) resulting in increased toxicity, particularly to early lifestage organisms. The goal of this research was to determine the sensitivity of fiddler crab larvae (Uca longisignalis) to photo-induced toxicity following exposure to Deepwater Horizon spill oil in support of the DWH Natural Resource Damage Assessment. Five replicate dishes each containing 20 larvae, were exposed to one of three UV treatments (10%, 50%, and 100% ambient natural sunlight) and one of five dilutions of water accommodated fractions of two naturally weathered source oils. A dose dependent effect of PAH and UV on larval mortality was observed. Mortality was markedly higher in PAH treatments that included co-exposure to more intense UV light. PAH treatments under low intensity sunlight had relatively high survival. These data demonstrate the importance of considering combined effects of non-chemical (i.e. UV exposure) and chemical stressors and the potential for photo-induced effects after exposure to PAH following the Deepwater Horizon spill.
Date: December 2015
Creator: Taylor, Leigh M.
Partner: UNT Libraries