UNT Theses and Dissertations - 48 Matching Results

Search Results

Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates

Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta, monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of adsorbed oxygen (3L O2 at 300 K) results in a lowering of the de-wetting temperature to 500 K, while saturation oxygen coverage (10 L O2, 300 K) results in de-wetting at 300 K. Carbide formation also lowers the de-wetting temperature to 300 K. Diffusion of Cu into the Ta substrate at 1100 K occurs only after a 5-minute induction period. This induction period increases ...
Date: December 1999
Creator: Chen, Li
Partner: UNT Libraries

Explorations with Polycarbocyclic Cage Compounds

Description: A variety of novel cage-functionalized pyridyl containing crown ethers have been prepared for use in selective alkali metal complexation studies. A highly preorganized, cage-functionalized cryptand also has been designed and has been synthesized for use as a selective Li+ complexant. The alkali metal picrate extraction profiles of these cage-functionalized crown ethers also have been studied. Novel cage-functionalized diazacrown ethers have been prepared for selective alkali metal complexation studies. Alkali metal picrate extraction experiments have been performed by using this new class of synthetic ionophores to investigate the effects of cage-annulation and the influence of N-pivot lariat sidearms upon their resulting complexation properties. Novel pyridyl containing calix[4]arene receptors were prepared. Analysis of their respective 1H NMR and 13C NMR spectra suggests that calix[4]arene moieties in the ligand occupy the cone conformation. The complexation properties of these host molecules were estimated by performing a series of alkali metal picrate extraction experiments. An optically active cage-functionalized crown ether which contains a binaphthyl moiety as the chiral unit was prepared. The ability of the resulting optically active crown ether to distinguish between enantiomers of guest ammonium ions (i.e., phenylethylamonium and phenylglycinate salts) in transport experiments was investigated. Hexacyclo[,12.05,10.05,15.010,14]hexadeca-6,8-diene-4,11-dione was prepared from hexacyclo[,9.03,7.04,14.06,15] pentadeca-10,12-diene-2,8-dione. Unanticipated but remarkable acid and base promoted rearrangements of this new cage dione to novel polycyclic systems were observed and subsequently were investigated. The structures of the new systems thereby obtained were determined unequivocally by application of X-ray crystallographic methods. It is noteworthy that the reactions reported herein each provide the corresponding rearranged product in high yield in a single synthetic step. Pi-facial and regioselectivity in the thermal Diels-Alder cycloaddition between hexacyclo[,12.05,10.05,15.010,14]hexadeca-6,8-diene- 4,11-dione and ethyl propiolate have been explored. This reaction proceeds via stereospecific approach of the dienophile toward the syn face of the diene p -system. However, [4+2]cycloaddition proceeds with ...
Date: August 1999
Creator: Chong, Hyun-Soon
Partner: UNT Libraries

FT-NMR and Raman Spectroscopic Studies of Molecular Dynamics in Liquids

Description: NMR relaxation and Raman lineshape analysis are well known methods for the study of molecular reorientational dynamics in liquids. The combination of these two methods provides another approach to tackle the characterization of molecular dynamics in liquids. Investigations presented here include (1) NMR relaxation study of polycyclic compounds in solution, (2) the study of nitromethane reorientational dynamics using the NMR and Raman methods, and (3) Raman lineshape analysis of reorientation hexafluorobenzene/benzene mixtures.
Date: December 1993
Creator: Wang, Kuen-Shian
Partner: UNT Libraries

Sulfur-induced Corrosion at Metal and Oxide Surfaces and Interfaces

Description: Sulfur adsorbed on metallic and oxide surfaces, whether originating from gaseous environments or segregating as an impurity to metallic interfaces, is linked to the deterioration of alloy performance. This research dealt with investigations on the interactions between sulfur and iron or iron alloy metallic and oxide surfaces under ultrahigh vacuum conditions. Sulfur was either intentionally dosed from a H2S source on an atomically clean metal surface, or segregated out as an impurity from the bulk to the metal surface by annealing at elevated temperatures.
Date: August 1997
Creator: Cabibil, Hyacinth (Hyacinth Liesl)
Partner: UNT Libraries

The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry

Description: The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
Date: May 1993
Creator: Talasek, Robert Thomas
Partner: UNT Libraries

Ligand Substitution Studies in the Tetracobalt Cluster Co₄(CO)₁₀([mu]₄-PPh₂) and Synthesis and Reactivity Studies in the Fe₂Pt and FeCo₂ Mixed-metal Clusters

Description: The kinetics of ligand substitution for CO in Co4(CO)10(mu4-PPh2) , 1, have been investigated for the ligands P(OMe)3, P(OEt)3, PPh2H, P(0-i-Pr)3, P(n-Bu)3, PPh3, P(i-Pr)3, and PCy3 over a wide temperature range.
Date: August 1991
Creator: Don, Ming-jaw
Partner: UNT Libraries

The Development of Predictive Models for the Acid Degradation of Chrysotile Asbestos

Description: The purpose of this study was to determine the factors affecting the acid degradation of chrysotile asbestos (Mg_3Si_2O_5(OH_4)) . Millions of tons of asbestos have found use in this country as insulative or ablative material. More than 95 percent of the asbestos in use is of the chrysotile variety. The remaining 5 percent is composed of various types of fibrous amphiboles. The inhalation of asbestos can lead to several diseases in humans. Asbestosis, lung cancer and mesothelioma are the most common afflictions associated with asbestos inhalation, and they may occur up to 40 years after the initial exposure. It has previously been reported that if more than 50 percent of the magnesium is removed from a chrysotile sample its carcinogenicity is reduced to nil. Several inorganic acids were studied to determine their ability to leach magnesium from chrysotile. It was found that the ability to leach magnesium was dependent upon the acidic anion in addition to the concentration of the acid. The ordering of the efficiency of the acids in their ability to remove magnesium from chrysotile was found to be HCl > H_2SO_4 > H_3PO_4 > HNO_3. Predictive equations were developed to allow the calculation of the amount of magnesium removed under various acid concentrations as a function of time and acid species. The effects of temperature and dissolved spectator cations upon the degradation process were also examined. There was no major effect on the amount of magnesium removed as a function of spectator cation concentration. An infrared method was also developed to allow the determination of the percent degradation of a chrysotile sample directly. The shifts in the positions of three silicate stretching peaks (1068 cm^-1, 948 cm^-1 and 715 cm^-1) and one magnesium oxygen stretching peak (415 cm"1) as a function of the percent magnesium removed were ...
Date: May 1993
Creator: Ingram, Kevin D. (Kevin Dean)
Partner: UNT Libraries

Solid State Diffusion Kinetics of Intermetallic Compound Formation in Composite Solder

Description: The Sn/Pb eutectic alloy system is the most widely used joining material in the electronics industry. In this application, the solder acts as both an electrical and mechanical connection within and among the different packaging levels in an electronic device. Recent advances in packaging technologies, however, driven by the desire for miniaturization and increased circuit speed, result in severe operating conditions for the solder connection. In an effort to improve its mechanical integrity, metallic or intermetallic particles have been added to eutectic Sn/Pb solder, and termed composite solders. It was the goal of this study to investigate the growth and morphology of the two intermetallic phases (Cu6Sn5 and Cu3Sn) that form between a Cu substrate and Sn/Pb solder under different aging and annealing conditions.
Date: May 1993
Creator: Sees, Jennifer A. (Jennifer Anne)
Partner: UNT Libraries

Spectrofluorometric and Solubility Studies of Polycyclic Aromatic Hydrocarbons in Hydrogen Bonded Binary Solvent Mixtures

Description: The purpose of this dissertation is to investigate the behavior of polycyclic aromatic hydrocarbons (PAHs) in binary solvent systems and determine and/or develop predictive mathematical expressions for describing solutions in which hydrogen-bonding occurs.
Date: May 1997
Creator: Powell, Joyce R., 1968-
Partner: UNT Libraries

Substitution Chemistry of the Cobalt Complexes [Co₂(CO)₆(PhC≡CR) (R=Ph, H) and PhCCo₃(CO)₉] with the Diphosphine Ligands [Bis(diphenylphosphino)maleic Anhydride (BMA) and (Z)-Ph₂PCH=CHPPh₂]. Reversible Chelate-to-Bridge Diphosphine Ligand Exchange, Phosphorus-Carbon Bond Cleavage and Phosphorus-Carbon Bond Formation

Description: The tricobalt cluster PhCCo3(CO)9 (1) reacts with the bidentate phosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in the presence of added Me3NO to give the diphosphine-substituted cluster PhCCo3(CO)7(bma) (2). Cluster 2 is unstable in solution, readily losing CO to afford Co3(CO)6[(μ2-η2/η1-C(Ph)C=C(PPh2)C(O)OC(O)](μ2-PPh2) (3) as the sole observed product. VT-31P NMR measurements on cluster 2 indicate that the bma ligand functions as both a chelating and a bridging ligand. At -97 °C, 31P NMR analysis of 2 reveals a Keq of 5.7 in favor of the bridging isomer. The bridged bma cluster 2 is the only observed species above -50°C. The solid-state structure of 2 does not correspond to the major bridging isomer observed in solution but rather the minor chelating isomer. The conversion of 2 to 3 followed first-order kinetics, with the reaction rates being independent of the nature of the reaction solvent and strongly suppressed by added CO, supporting a dissociative loss of CO as the rate-determining step. The activation parameters for CO loss were determined to be ΔH≠ = 29.9 ± 2.2 kcal/mol and ΔS≠ = 21.6 ± 6 eu.
Date: December 1994
Creator: Yang, Kaiyuan
Partner: UNT Libraries

Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Description: A group of azabiphenyl complexes and supramolecules, and their reduced and oxidized forms when possible, were characterized by cyclic voltammetry and electronic absorption spectroscopy. The oxidized and reduced species, if sufficiently stable, were further generated electrochemically inside a specially designed quartz cell with optically transparent electrode, so that the spectra of the electrochemically generated species could be taken in situ. Assignments were proposed for both parent and product electronic spectra. Species investigated included a range of Ru(II) and Pt(II) complexes, as well as catenanes and their comparents. Using the localized electronic model, the electrochemical reduction can be in most cases assigned as azabiphenyl-based, and the oxidation as transition metal-based. This is consistent with the fact that the azabiphenyl compounds have a low lying π* orbital. The electronic absorption spectra of the compounds under study are mainly composed of π —> π* bands with, in some cases, charge transfer bands also.
Date: August 1995
Creator: Yang, Lei
Partner: UNT Libraries

Experimental and Theoretical Studies of Polycarbocyclic Compounds

Description: Part I. Diels-Alder cycloadditions of 1,2,3,4,9,9-hexachloro-1α,4α,4aα,8aβ-tetrahydro-l,4-methanonaphthalene (32) and 1,2,3,4,9,9-hexachloro-lα,4α,6,7- tetrahydro-l,4-methanonaphthalene (33) to 4-methyl- and 4-phenyl-l,2,4-triazoline-3,5-dione [MTAD and PTAD, respectively] and to N-methylmaleimide (NMM) have been studied. The structures of several of the resulting cycloadducts were determined by X-ray crystallographic methods. The observed stereoselectivity of each of these Diels-Alder reactions was further investigated via application of theoretical methods. Thus, semiempirical (AMI) and ab initio molecular orbital calculations were used to calculate relative energies. Ab initio calculations were employed to perform frontier molecular orbital analyses of diene-dienophile interactions.
Date: May 1998
Creator: Shukla, Rajesh, 1964-
Partner: UNT Libraries

Thermodynamic Properties of Nonelectrolyte Solutes in Ternary Solvent Mixtures

Description: The purpose of this dissertation is to investigate the thermodynamic properties of nonelectrolyte solutes dissolved in ternary solvent mixtures, and to develop mathematical expressions for predicting and describing that behavior in the solvent mixtures. Thirty-four ternary solvent systems were studied containing either alcohol (1-propanol, 2-propanol, 1-butanol, and 2-butanol), alkane (cyclohexane, heptane, and 2,2,4-trimethylpentane) or alkoxyalcohol (2-ethoxyethanol and 2-butoxyethanol) cosolvents. Approximately 2500 experimental measurements were performed. Expressions were derived from the Combined Nearly Ideal Multiple Solvent (NIMS)/Redlich-Kister, the Combined Nearly Ideal Multiple Solvent (NIMS)/Bertrand, Acree and Burchfield (BAB) and the Modified Wilson models for predicting solute solubility in ternary solvent (or even higher multicomponent) mixtures based upon the model constants calculated from solubility data in sub-binary solvents. Average percent deviation between predicted and observed values were less than 2%, documenting that these models provide a fairly accurate description of the thermodynamic properties of nonelectrolyte solutions. Moreover, the models can be used for solubility prediction in solvent mixtures in order to find the optimum solvent composition for solubilization or desolubilization of a solute. From a computational standpoint, the Combined Nearly Ideal Multiple Solvent/Redlich-Kister equation is preferred because the needed model constants can be calculated with a simple linear regressional analysis. Model constants for the Modified Wilson equation had to be calculated using a reiterative trial-and-error method. The C++ program for the Modified Wilson equation applied to ternary and heptanary solvent mixtures is attached.
Date: August 1999
Creator: Deng, Tʻai-ho
Partner: UNT Libraries

A Quenchofluorometric Study of Polycyclic Aromatic Hydrocarbons in Molecularly Organized Media

Description: Detection, identification and separation of polycyclic aromatic compounds in environmental samples are of extreme importance since many of these compounds are well known for their potential carcinogenic and/or mutagenic activities. Selective quenching of molecular fluorescence can be utilized effectively to analyze mixtures containing different polycyclic aromatic hydrocarbons. Molecularly organized assemblies are used widely in detection and separation of these compounds mainly because of less toxicity and enhanced solubilization capabilities associated with these media. Feasibility of using nitromethane and the alkylpyridinium cation as selective fluorescence quenching agents for discriminating between alternant versus nonalternant polycyclic aromatic hydrocarbons (PAHs) is critically examined in several molecularly organized micellar solvent media. Fluorescence quenching is used to probe the structural features in mixed micelles containing the various combinations of anionic, cationic, nonionic and zwitterionic surfactants. Experimental results provide valuable information regarding molecular interactions between the dissimilar surfactants.
Date: May 1998
Creator: Pandey, Siddharth
Partner: UNT Libraries

Thermophysical and Mechanical Properties of Polymer Liquid Crystals and Their Blends

Description: Tensile properties, namely the elastic modulus, tensile strength, percent of elongation at yield and at the break were determined for the pure components and blends. The results are connected to the respective phase diagrams and demonstrate that blending makes property manipulation possible. Blends for which the mechanical properties are better than those of pure EPs can be obtained.
Date: May 1994
Creator: López, Betty Lucy
Partner: UNT Libraries

A Study of the Processing Properties of Hard-Particle Reinforced Composite Solders

Description: The microstructural, mechanical and thermal properties of various composite solder formulations were investigated. Special interest was given in observing the processing properties, microstructural characteristics, fatigue behavior, tensile strength, and the effect of environmental ageing on the composite solder formulations. The solderability parameters wetting and speed of soldering, reflow temperature, and the thermal stability of the resulting composite solder were also examined.
Date: May 1994
Creator: Calderon, Jose Guadalupe
Partner: UNT Libraries

NMR Study of the Reorientational and Exchange Dynamics of Organometallic Complexes

Description: Investigations presented here are (a) the study of reorientational dynamics and internal rotation in transition metal complexes by NMR relaxation experiments, and (b) the study of ligand exchange dynamics in transition metal complexes by exchange NMR experiments. The phenyl ring rotation in Ru3(CO)9(μ3-CO)(μ3-NPh) and Re(Co)2(CO)10(μ3- CPh) was monitored by 13C NMR relaxation experiments to probe intramolecular electronic and/or steric interactions. It was found that the rotation is relatively free in the first complex, but is restrained in the second one. The steric interactions in the complexes were ascertained by the measurement of the closest approach intramolecular distances. The rotational energy barriers in the two complexes were also calculated by using both the Extended Hiickel and Fenske-Hall methods. The study suggests that the barrier is due mainly to the steric interactions. The exchange NMR study revealed two carbonyl exchange processes in both Ru3(CO)9(μ3-CO)(μ3-NPh) and Ru3(CO)8(PPh3)(μ3-CO)(μ3-NPh). The lower energy process is a tripodal rotation of the terminal carbonyls. The higher energy process, resulting in the exchange between the equatorial and bridging carbonyls, but not between the axial and bridging carbonyls, involves the concerted formation of edge-bridging μ2-CO moieties. The effect of the PPh3 ligand on the carbonyl exchange rates has been discussed. A combination of relaxation and exchange NMR found that PPh3 ligand rotation about the Ru-P bond is slow on the exchange NMR time scale and the phenyl rotation about the P-Cipso bond is fast on the exchange NMR time scale but is slow on the NMR relaxation time scale.
Date: May 1996
Creator: Wang, Dongqing
Partner: UNT Libraries

Preparation and Stereochemistry of Reactive Intermediates Containing a Silicon-Carbon Double Bond

Description: 1,1-Dimethyl-2-neopentylsilene reacted with the N-methylimine of benzophenone to give 1,2,2-trimethyl-3- neopentyl-4,4-diphenyl-l-aza-2-silacyclobutane, I, and 2,3,4,4a-tetrahydro-2,3,3-trimethyl-1-phenyl-4-neopentyl-2- aza-3-silanephthalene, II, in 35% and 20% yields, respectively. Compounds I and II did not serve as thermal silene precursors. Heating I and II to over 280°C did not yield 1,3-disilacyclobutanes. In the presence of 2,3- dimethyl-1,3-butadiene typical silene products were not obtained. However, I and II reacted rapidly with methanol at room temperature to give the ring-opened products (E)-2- methoxy-2,5,5-trimethyl-2-silahex-3-ene, III, 1,1- diphenyldimethylamine, IV, and 2-methoxy-2,5,5-trimethyl-3- (N-methylaminodiphenyl) methyl-2-silahexane, V.
Date: December 1991
Creator: Uang, Shinian
Partner: UNT Libraries

Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Description: Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into production, the cost of manufacturing microchips could be lowered. This research was designed to investigate the loss of selectivity for W-CVD in an attempt to understand the processes which lead to its occurrence. The effects of passivating the oxide surface with methanol against the formation of tungsten nuclei were studied. It was found that the methanol dissociates at oxide surface defect sites and blocks such sites from becoming tungsten nucleation sites. The effect of reactant partial pressure ratio on selectivity was also studied. It was found that as the reactant partial pressures are varied there are significant changes in the ...
Date: August 1994
Creator: Cheek, Roger W. (Roger Warren)
Partner: UNT Libraries

Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Description: Chain conformations and the presence of chain overlaps and entanglements in dilute polymer solutions have been analyzed. The fundamental problem of existence of chain overlaps in dilute solutions is related to the drag reduction phenomenon (DR). Even though DR occurs in solutions with the concentration of only few parts per million (ppm), some theories suggest that entanglements may play an important role in DR mechanism. Brownian dynamics technique have been used to perform simulations of dilute polymer solutions at rest and under shear flow. A measure of interchain contacts and two different measures of entanglements have been devised to evaluate the structure of polymer chains in solution. Simulation results have shown that overlaps and entanglements do exist in static dilute solutions as well as in solutions under shear flow. The effect of solution concentration, shear rate and molecular mass have been examined. In agreement with the solvation theory of DR mechanism, simulation results have demonstrated the importance of polymer + polymer interactions in dilute solutions.
Date: August 1996
Creator: Drewniak, Marta
Partner: UNT Libraries