UNT Theses and Dissertations - 75 Matching Results

Search Results

Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates

Description: The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline Ta significantly degrade the strength of Cu/Ta chemical interactions, and affect the kinetics of Cu diffusion into bulk Ta. On clean Ta, monolayer coverages of Cu will de-wet only above 600 K. A partial monolayer of adsorbed oxygen (3L O2 at 300 K) results in a lowering of the de-wetting temperature to 500 K, while saturation oxygen coverage (10 L O2, 300 K) results in de-wetting at 300 K. Carbide formation also lowers the de-wetting temperature to 300 K. Diffusion of Cu into the Ta substrate at 1100 K occurs only after a 5-minute induction period. This induction period increases ...
Date: December 1999
Creator: Chen, Li
Partner: UNT Libraries

The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal

Description: The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80% landfill closure rate in the next 20 years. The development of a viable energy resource from MSW, in the form of densified Refuse Derived Fuel (dRDF), provides solutions to the problems of MSW generation and fossil fuel depletions. Every 2 tons of MSW yields approximately 1 ton of dRDF. Each ton of dRDF has an energy equivalent of more than two barrels of oil. At current production rates the US is "throwing away" over 200,000,000 barrels of oil a year. In order to be considered a truly viable product dRDF must be extensively studied; in terms of it's cost of production, it's combustion properties, and it's potential for environmental pollution. In 1987 a research team from the University of North Texas, in conjunction with the US DOE and Argonne National Laboratory (ANL), cofired over 550 tons of dRDF and bdRDF with a high sulfur Kentucky coal in a boiler at ANL. This work examines the emission rates of polychlorinated dioxins (PCDDs) and furans (PCDFs) during the combustion of the dRDF, bdRDF, and coal. Even at levels of 50% by Btu content of dRDF in the fuel feedstock, emission rates of PCDDs and PCDFs were below detection limits. The dRDF is shown to be an environmentally acceptable product, which could help resolve one of the ...
Date: August 1990
Creator: Moore, Paul, 1962-
Partner: UNT Libraries

The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry

Description: The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
Date: May 1993
Creator: Talasek, Robert Thomas
Partner: UNT Libraries

An Approach Towards the Total Synthesis of Clonostachydiol

Description: The syntheses of the unsymmetrical 14-membered bismacrolides have been reviewed. A total synthesis of clonostachydiol, the latest to join this family, has been attempted using trimethylsilyl acetylene as the builiding block and palladium catalyzed reactions for the formation of key bonds. The alkyne groups were introduced by Stille coupling of trimethylstannylethynyltrimethylsilane with an acid chloride for one fragment and by addition of lithiotrimethylsilyl acetylene to an aldehyde for the other. Lactic acid derivatives were chosen as starting materials for both fragments, thus introducing two of the chiral centers. The remaining stereocenters were introduced using stereoselective reductions of ketones.
Date: August 1995
Creator: Maiti, Tushar B. (Tushar Baran)
Partner: UNT Libraries

Aqueous Solubilities and Transformation of Chlorinated Benzenes

Description: Aqueous solubilities of twelve chlorinated benzenes were determined by two methods. In one method, the solutions in water were prepared by a vigorous stirring method followed by n-hexane extraction and GC-ECD analysis. In the second method, HPLC was used to prepare the saturated solutions. Experimental results were compared with the predictive values, the relative standard deviations are around 10%. Most of the chlorinated benzenes exhibit water induced transformations. The transformation products were either isomeric or with higher and lower numbers of chlorine substituents. The transformation phenomena can be explained by polarity, symmetry, reactivity of the chlorine atoms, and hydrophobic interactions. The mechanism of the transformation is governed by the radical mechanism.
Date: August 1990
Creator: Wang, Hui-Wen
Partner: UNT Libraries

Characterization of Low Barrier Hydrogen Bonds in Enzyme Catalysis: an Ab Initio and DFT Investigation

Description: Hartree-Fock, Moller-Plesset, and density functional theory calculations have been carried out using 6-31+G(d), 6-31+G(d,p) and 6-31++G(d,p) basis sets to study the properties of low-barrier or short-strong hydrogen bonds (SSHB) and their potential role in enzyme-catalyzed reactions that involve proton abstraction from a weak carbon-acid by a weak base. Formic acid/formate anion, enol/enolate and other complexes have been chosen to simulate a SSHB system. These complexes have been calculated to form very short, very short hydrogen bonds with a very low barrier for proton transfer from the donor to the acceptor. Two important environmental factors including small amount of solvent molecules that could possibly exist at the active site of an enzyme and the polarity around the active site were simulated to study their energetic and geometrical influences to a SSHB. It was found that microsolvation that improves the matching of pK as of the hydrogen bond donor and acceptor involved in the SSHB will always increase the interaction of the hydrogen bond; microsolvation that disrupts the matching of pKas, on the other hand, will lead to a weaker SSHB. Polarity surrounding the SSHB, simulated by SCRF-SCIPCM model, can significantly reduce the strength and stability of a SSHB. The residual strength of a SSHB is about 10--11 kcal/mol that is still significantly stable compared with a traditional weak hydrogen bond that is only about 3--5 kcal/mol in any cases. These results indicate that SSHB can exist under polar environment. Possible reaction intermediates and transition states for the reaction catalyzed by ketosteroid isomerase were simulated to study the stabilizing effect of a SSHB on intermediates and transition states. It was found that at least one SSHB is formed in each of the simulated intermediate-catalyst complexes, strongly supporting the LBHB mechanism proposed by Cleland and Kreevoy. Computational results on the activation energy for ...
Date: August 1999
Creator: Pan, Yongping
Partner: UNT Libraries

Chemical Equilibria in Binary Solvents

Description: Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Date: August 1997
Creator: McHale, Mary E. R.
Partner: UNT Libraries

Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Description: A group of azabiphenyl complexes and supramolecules, and their reduced and oxidized forms when possible, were characterized by cyclic voltammetry and electronic absorption spectroscopy. The oxidized and reduced species, if sufficiently stable, were further generated electrochemically inside a specially designed quartz cell with optically transparent electrode, so that the spectra of the electrochemically generated species could be taken in situ. Assignments were proposed for both parent and product electronic spectra. Species investigated included a range of Ru(II) and Pt(II) complexes, as well as catenanes and their comparents. Using the localized electronic model, the electrochemical reduction can be in most cases assigned as azabiphenyl-based, and the oxidation as transition metal-based. This is consistent with the fact that the azabiphenyl compounds have a low lying π* orbital. The electronic absorption spectra of the compounds under study are mainly composed of π —> π* bands with, in some cases, charge transfer bands also.
Date: August 1995
Creator: Yang, Lei
Partner: UNT Libraries

Comparison of 43Sn/43Pb/14Bi Solder and Standard 60Sn/40Pb Solder by Thermocyclic Fatigue Analysis

Description: The thermocyclic fatigue behavior of the low-melting solder 43Sn/43Pb/14Bi has been investigated and compared to that of standard 60Sn/4OPb solder via metallographic analysis (using scanning electron microscopy) and evaluation of the degree of fatigue development (using a fatigue scale as a function of thermocycles). Specimens were subjected to shearing strains imposed by several hundred fatigue thermocycles. Both solder types fatigue by the same microstructural failure mechanism as described by other workers. The mechanism is characterized by a preferential coarsening of the solder joint microstructure at the region of maximum stress concentration where cracks originate.
Date: August 1991
Creator: Calderon, Jose Guadalupe
Partner: UNT Libraries

Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Description: Chain conformations and the presence of chain overlaps and entanglements in dilute polymer solutions have been analyzed. The fundamental problem of existence of chain overlaps in dilute solutions is related to the drag reduction phenomenon (DR). Even though DR occurs in solutions with the concentration of only few parts per million (ppm), some theories suggest that entanglements may play an important role in DR mechanism. Brownian dynamics technique have been used to perform simulations of dilute polymer solutions at rest and under shear flow. A measure of interchain contacts and two different measures of entanglements have been devised to evaluate the structure of polymer chains in solution. Simulation results have shown that overlaps and entanglements do exist in static dilute solutions as well as in solutions under shear flow. The effect of solution concentration, shear rate and molecular mass have been examined. In agreement with the solvation theory of DR mechanism, simulation results have demonstrated the importance of polymer + polymer interactions in dilute solutions.
Date: August 1996
Creator: Drewniak, Marta
Partner: UNT Libraries

The Development of Predictive Models for the Acid Degradation of Chrysotile Asbestos

Description: The purpose of this study was to determine the factors affecting the acid degradation of chrysotile asbestos (Mg_3Si_2O_5(OH_4)) . Millions of tons of asbestos have found use in this country as insulative or ablative material. More than 95 percent of the asbestos in use is of the chrysotile variety. The remaining 5 percent is composed of various types of fibrous amphiboles. The inhalation of asbestos can lead to several diseases in humans. Asbestosis, lung cancer and mesothelioma are the most common afflictions associated with asbestos inhalation, and they may occur up to 40 years after the initial exposure. It has previously been reported that if more than 50 percent of the magnesium is removed from a chrysotile sample its carcinogenicity is reduced to nil. Several inorganic acids were studied to determine their ability to leach magnesium from chrysotile. It was found that the ability to leach magnesium was dependent upon the acidic anion in addition to the concentration of the acid. The ordering of the efficiency of the acids in their ability to remove magnesium from chrysotile was found to be HCl > H_2SO_4 > H_3PO_4 > HNO_3. Predictive equations were developed to allow the calculation of the amount of magnesium removed under various acid concentrations as a function of time and acid species. The effects of temperature and dissolved spectator cations upon the degradation process were also examined. There was no major effect on the amount of magnesium removed as a function of spectator cation concentration. An infrared method was also developed to allow the determination of the percent degradation of a chrysotile sample directly. The shifts in the positions of three silicate stretching peaks (1068 cm^-1, 948 cm^-1 and 715 cm^-1) and one magnesium oxygen stretching peak (415 cm"1) as a function of the percent magnesium removed were ...
Date: May 1993
Creator: Ingram, Kevin D. (Kevin Dean)
Partner: UNT Libraries

Experimental and Theoretical Studies of Polycarbocyclic Compounds

Description: Part I. Diels-Alder cycloadditions of 1,2,3,4,9,9-hexachloro-1α,4α,4aα,8aβ-tetrahydro-l,4-methanonaphthalene (32) and 1,2,3,4,9,9-hexachloro-lα,4α,6,7- tetrahydro-l,4-methanonaphthalene (33) to 4-methyl- and 4-phenyl-l,2,4-triazoline-3,5-dione [MTAD and PTAD, respectively] and to N-methylmaleimide (NMM) have been studied. The structures of several of the resulting cycloadducts were determined by X-ray crystallographic methods. The observed stereoselectivity of each of these Diels-Alder reactions was further investigated via application of theoretical methods. Thus, semiempirical (AMI) and ab initio molecular orbital calculations were used to calculate relative energies. Ab initio calculations were employed to perform frontier molecular orbital analyses of diene-dienophile interactions.
Date: May 1998
Creator: Shukla, Rajesh, 1964-
Partner: UNT Libraries

Explorations with Polycarbocyclic Cage Compounds

Description: A variety of novel cage-functionalized pyridyl containing crown ethers have been prepared for use in selective alkali metal complexation studies. A highly preorganized, cage-functionalized cryptand also has been designed and has been synthesized for use as a selective Li+ complexant. The alkali metal picrate extraction profiles of these cage-functionalized crown ethers also have been studied. Novel cage-functionalized diazacrown ethers have been prepared for selective alkali metal complexation studies. Alkali metal picrate extraction experiments have been performed by using this new class of synthetic ionophores to investigate the effects of cage-annulation and the influence of N-pivot lariat sidearms upon their resulting complexation properties. Novel pyridyl containing calix[4]arene receptors were prepared. Analysis of their respective 1H NMR and 13C NMR spectra suggests that calix[4]arene moieties in the ligand occupy the cone conformation. The complexation properties of these host molecules were estimated by performing a series of alkali metal picrate extraction experiments. An optically active cage-functionalized crown ether which contains a binaphthyl moiety as the chiral unit was prepared. The ability of the resulting optically active crown ether to distinguish between enantiomers of guest ammonium ions (i.e., phenylethylamonium and phenylglycinate salts) in transport experiments was investigated. Hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene-4,11-dione was prepared from hexacyclo[7.4.2.01,9.03,7.04,14.06,15] pentadeca-10,12-diene-2,8-dione. Unanticipated but remarkable acid and base promoted rearrangements of this new cage dione to novel polycyclic systems were observed and subsequently were investigated. The structures of the new systems thereby obtained were determined unequivocally by application of X-ray crystallographic methods. It is noteworthy that the reactions reported herein each provide the corresponding rearranged product in high yield in a single synthetic step. Pi-facial and regioselectivity in the thermal Diels-Alder cycloaddition between hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene- 4,11-dione and ethyl propiolate have been explored. This reaction proceeds via stereospecific approach of the dienophile toward the syn face of the diene p -system. However, [4+2]cycloaddition proceeds with ...
Date: August 1999
Creator: Chong, Hyun-Soon
Partner: UNT Libraries

FT-NMR and Raman Spectroscopic Studies of Molecular Dynamics in Liquids

Description: NMR relaxation and Raman lineshape analysis are well known methods for the study of molecular reorientational dynamics in liquids. The combination of these two methods provides another approach to tackle the characterization of molecular dynamics in liquids. Investigations presented here include (1) NMR relaxation study of polycyclic compounds in solution, (2) the study of nitromethane reorientational dynamics using the NMR and Raman methods, and (3) Raman lineshape analysis of reorientation hexafluorobenzene/benzene mixtures.
Date: December 1993
Creator: Wang, Kuen-Shian
Partner: UNT Libraries

Interactions of Clean and Sulfur-modified Reactive Metal Surfaces with Aqueous Vapor and Liquid Environments : A Combined Ultra-high Vacuum/electrochemistry Study

Description: The focus of this research is to explore the molecular-level interactions between reactive metal surfaces and aqueous environments by combined ultra-high vacuum/electrochemistry (UHV-EC) methodology. The objectives of this work are to understand (1) the effects of sulfate ions on the passivity of metal oxide/hydroxide surface layer, (2) the effects of sulfur-modification on the evolution of metal oxide/hydroxide surface layer, and (3) the effects of sulfur adsorbate on cation adsorption at metal surfaces.
Date: May 1998
Creator: Lin, Tien-Chih, 1966-
Partner: UNT Libraries

Investigation of Copper Out-Plating Mechanism on Silicon Wafer Surface

Description: As the miniaturization keeps decreasing in semiconductor device fabrication, metal contamination on silicon surfaces becomes critical. An investigation of the fundamental mechanism of metal contamination process on silicon surface is therefore important. Kinetics and thermodynamics of the copper out-plating process on silicon surfaces in diluted HF solutions are both evaluated by several analytical methods.
Date: August 1995
Creator: Chien, Hsu-Yueh
Partner: UNT Libraries

Investigation of Ultratrace Metallic and Organic Contaminants in Semiconductor Processing Environments

Description: Detection of ultratrace levels of metallic ion impurities in hydrofluoric acid solutions and alkaline hydrogen peroxide solution was demonstrated using a silicon-based sensing electrode. The sensor's operation principle is based on direct measurements of the silicon open-circuit potential shift generated by the interaction between metallic ions and the silicon-based sensing surface. The new sensor can have practical applications in the on-line monitoring of microelectronic chemical processing. The detection of Ag+ content in KODAK waste water was carried out successfully by this novel sensor. Trace levels of organic impurities in the hydrofluoric acid solutions and in the cleanroom air were characterized by multiple internal reflection infrared spectroscopy (MIRIS) using an organics probe prepared directly from a regular silicon wafer.
Date: May 1997
Creator: Xu, Fei, 1971-
Partner: UNT Libraries

Kinetic Studies of the Reactions of Alkyl and Silyl Hydrides

Description: The Kinetics of the reactions involving alkyl and silyl hydrides were studied by the flash photolysis / resonance fluorescence technique. The reactions of alkyl radicals (R = C₂H₅, i-C₃H₇, t-C₄H₉) with HBr have been studied at room temperature and the rate constants obtained (units are in cm³ s^-1 ) are: k₃.₃ = (7.01 ± 0.15) x 10^-12, k₃.₂ = (1.25 ± 0.06) x 10^-11, k₃.₁ = (2.67 ± 0.13) x 10^-11 These results, combined with previously determined reverse rate constants and other kinetic information, yield bond dissociation enthalpies (units in kJ mol^-1) at 298 K : primary C-H in C₂H₅-H (423.6 ± 2), secondary C-H in i-C₃H₇-H (409.9 ± 2), tertiary C-H in t-C₄H₉-H (405.1 ± 2). These rate constants and bond energies are in good agreement with previous results.
Date: August 1996
Creator: Yuan, Jessie (Jessie Win-Jae)
Partner: UNT Libraries

Kinetic Studies of the Reactions of Cl and Br with Silane and Trimethylsilane

Description: The temperature dependence of the reactions of halogen atoms Cl and Br with SiH4 and (CH3)3SiH have been investigated with the flash photolysis-resonance fluorescence technique. CCI4 and CH2Br2 were used as precursors to produce Cl and Br atoms, respectively. Experiments gave {k(Cl + SiH4) (295 - 472 K)} = (1.56 +0.11) x 10-1 exp[(2.0 + 0.2) kJ mol'/RT] cm3 s4, {k(Br + SiH4)(295 - 575 K)} = (9.0 + 1.5) x 10-" exp[-(17.0 + 0.6) Id mol'/RT] cm3 s', {k(Cl + (CH3)3SiH)(295 - 468 K)} = (1.24 0.35) x 104 exp[(1.3 + 0.8) Id mol4/RT] cm3 s', and {k(Br + (CH3)3SiH)(295 - 456 K)} = (7.6 + 3.3) x 1010 exp[-(28.4 + 1.3) Id mol'/RT] cm3 s'. The results were compared with values from earlier work.
Date: May 1992
Creator: Ding, Luying
Partner: UNT Libraries

A Kinetic Study of the Recombination Reacton Na + SO₂ + Ar

Description: The recombination reaction Na + S02 + Ar was investigated at 787 16 K and at pressures from 1.7 to 80 kPa. NaI vapor was photolyzed by an excimer laser at 308 nm to create Na atoms, whose concentration was monitored by time-resolved resonance absorption at 589 nm. The rate constant at the low pressure limit is ko = (2.7 0.2) x 10-21 cm6 molecule-2 s~1. The Na-SO 2 dissociation energy E0 = 170 35 kJ mol1 was calculated with RRKM theory. The equilibrium constant gave a lower limit E0 > 172 kJ mol~ 1. By combination of these two results, E0 = 190 15 kJ mol~ 1 is obtained. The high pressure limit is k, = (1 - 3) x 10-10 cm3 molecule 1 s~1, depending on the extrapolation method used. Two versions of collision theory were employed to estimate k,.. The 'harpoon' model shows the best agreement with experiment.
Date: December 1990
Creator: Shi, Youchun
Partner: UNT Libraries

Kinetics and Mechanisms of Metal Carbonyls

Description: Pulsed laser flash photolysis with both visible and infrared detection has been applied to the study of the displacement of weakly coordinating ligands (Lw) by strongly "trapping" nucleophiles (Ls) containing either an olefinic functionality (Ls = 1-hexene, 1-decene, 1-tetradecene) or nitrogen (Ls = acetonitrile, hydrocinnamonitrile) from the photogenerated 16 electron pentacarbonylchromium (0) intermediate. 5-Chloropent-l-ene (Cl-ol), a potentially bidentate ligand, has been shown to form (ol-Cl) pentacarbonylchromium (0), in which Cl-ol is bonded to Cr via a lone pair on the chlorine, and isomerize to (Cl-ol) pentacarbonylchromium (0), in which Cl-ol is bonded to the olefinic functionality on the submillisecond time scale. This process has been studied in both the infrared and visible region employing both fluorobenzene or n-heptane as the "inert" diluent. Parallel studies employing 1-chlorobutane and 1-hexene were also evaluated and showed great similiarity with the Cl-ol system. The data supported a largely dissociative process with a possibility of a small interchange process involving the H's on the alkyl chain. Studies were also carried out for various Cr(CO)6/arene/Ls systems (arene = various alkyl or halogenated substituted benzenes). The data indicated that for both C6H5R (R=various alkyl chains) or multi-alkyl substituted arenes (i.e. o-xylene, 1,2,3-trimethylbenzene) containing an "unhindered" ring-edge, bonding to the the Cr(CO)5 moiety occurs "edge on" via a partially delocalized center of unsaturation on the ring. The data indicated that both electronic and steric properties of the arenes influence the kinetics, and that an interchange pathway takes place at least, in part, through the alkyl chains on both the arenes and "trapping" nucleophiles. Moreover, halogenated arenes bond through the lone pair on the halogen for both CI- and Br- derivatives but "edge-on" for the fluorinated arenes. Finally, in the case of arene complexes without and "unhindered" ring-edge (i.e., 1,2,3,4,5-pentamethylbenzene) bonding can occur either "edge-on" or through the ring ...
Date: May 1998
Creator: Ladogana, Santino
Partner: UNT Libraries