UNT Theses and Dissertations - 4 Matching Results

Search Results

Efficient Linked List Ranking Algorithms and Parentheses Matching as a New Strategy for Parallel Algorithm Design

Description: The goal of a parallel algorithm is to solve a single problem using multiple processors working together and to do so in an efficient manner. In this regard, there is a need to categorize strategies in order to solve broad classes of problems with similar structures and requirements. In this dissertation, two parallel algorithm design strategies are considered: linked list ranking and parentheses matching.
Date: December 1993
Creator: Halverson, Ranette Hudson
Partner: UNT Libraries

Multiresolutional/Fractal Compression of Still and Moving Pictures

Description: The scope of the present dissertation is a deep lossy compression of still and moving grayscale pictures while maintaining their fidelity, with a specific goal of creating a working prototype of a software system for use in low bandwidth transmission of still satellite imagery and weather briefings with the best preservation of features considered important by the end user.
Date: December 1993
Creator: Kiselyov, Oleg E.
Partner: UNT Libraries

Temporal Connectionist Expert Systems Using a Temporal Backpropagation Algorithm

Description: Representing time has been considered a general problem for artificial intelligence research for many years. More recently, the question of representing time has become increasingly important in representing human decision making process through connectionist expert systems. Because most human behaviors unfold over time, any attempt to represent expert performance, without considering its temporal nature, can often lead to incorrect results. A temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems, has been introduced. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications. A temporal backpropagation algorithm which supports the model has been developed. The model along with the temporal backpropagation algorithm makes it extremely practical to define any artificial neural network application. Also, an approach that can be followed to decrease the memory space used by weight matrix has been introduced. The algorithm was tested using a medical connectionist expert system to show how best we describe not only the disease but also the entire course of the disease. The system, first, was trained using a pattern that was encoded from the expert system knowledge base rules. Following then, series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The first series of experiments was done to determine if the training process worked as predicted. In the second series of experiments, the weight matrix in the trained system was defined as a function of time intervals before presenting the system with the learned patterns. The result of the two experiments indicate that both approaches produce correct results. The only difference between the two results ...
Date: December 1993
Creator: Civelek, Ferda N. (Ferda Nur)
Partner: UNT Libraries

An Efficient Hybrid Heuristic and Probabilistic Model for the Gate Matrix Layout Problem in VLSI Design

Description: In this thesis, the gate matrix layout problem in VLSI design is considered where the goal is to minimize the number of tracks required to layout a given circuit and a taxonomy of approaches to its solution is presented. An efficient hybrid heuristic is also proposed for this combinatorial optimization problem, which is based on the combination of probabilistic hill-climbing technique and greedy method. This heuristic is tested experimentally with respect to four existing algorithms. As test cases, five benchmark problems from the literature as well as randomly generated problem instances are considered. The experimental results show that the proposed hybrid algorithm, on the average, performs better than other heuristics in terms of the required computation time and/or the quality of solution. Due to the computation-intensive nature of the problem, an exact solution within reasonable time limits is impossible. So, it is difficult to judge the effectiveness of any heuristic in terms of the quality of solution (number of tracks required). A probabilistic model of the gate matrix layout problem that computes the expected number of tracks from the given input parameters, is useful to this respect. Such a probabilistic model is proposed in this thesis, and its performance is experimentally evaluated.
Date: August 1993
Creator: Bagchi, Tanuj
Partner: UNT Libraries