UNT Theses and Dissertations - 289 Matching Results

Search Results

Dynamic Screening via Intense Laser Radiation and Its Effects on Bulk and Surface Plasma Dispersion Relations

Description: Recent experimentation with excitation of surface plasmons on a gold film in the Kretschmann configuration have shown what appears to be a superconductive effect. Researchers claimed to see the existence of electron pairing during scattering as well as magnetic field repulsion while twisting the polarization of the laser. In an attempt to explain this, they pointed to a combination of electron-electron scattering in external fields as well as dynamic screening via intense laser radiation. This paper expands upon the latter, taking a look at the properties of a dynamic polarization function, its effects on bulk and surface plasmon dispersion relations, and its various consequences.
Date: August 2017
Creator: Lanier, Steven t
Partner: UNT Libraries

EEG, Alpha Waves and Coherence

Description: This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable y(t) is determined by a Langevin equation perturbed by a periodic process that in this time representation is hardly distinguishable from an erratic process. We show that the representation of this random process in the experimental time scale is characterized by a surprisingly extended coherence. We show that this model generates a sequence of damped oscillations with a time behavior that is remarkably similar to that derived from the analysis of real EEG's. The main result of this research work is that the existence of crucial events is not incompatible with the alpha wave coherence. In addition to this important ...
Date: May 2010
Creator: Ascolani, Gianluca
Partner: UNT Libraries

The Effect of Average Grain Size on Polycrystalline Diamond Films

Description: The work function of hydrogen-terminated, polycrystalline diamond was studied using ultraviolet photoelectron spectroscopy. Polycrystalline diamond films were deposited onto molybdenum substrates by electrophoresis for grain sizes ranging from 0.3 to 108 microns. The work function and electron affinity were measured using 21.2 eV photons from a helium plasma source. The films were characterized by x-ray photoelectron spectroscopy to determine elemental composition and the sp2/sp3 carbon fraction. The percentage of (111) diamond was determined by x-ray diffraction, and scanning electron microscopy was performed to determine average grain size. The measured work function has a maximum of 5.1 eV at 0.3 microns, and decreases to 3.2 eV at approximately 4 microns. Then the work function increases with increasing grain size to 4.0 eV at 15 microns and then asymptotically approaches the 4.8 eV work function of single crystal diamond at 108 microns. These results are consistent with a 3-component model in which the work function is controlled by single-crystal (111) diamond at larger grain sizes, graphitic carbon at smaller grain sizes, and by the electron affinity for the intervening grain sizes.
Date: May 2002
Creator: Abbott, Patrick Roland
Partner: UNT Libraries

The Effects of Cesium Deposition and Gas Exposure on the Field Emission Properties of Single Wall and Multiwall Carbon Nanotubes

Description: The effects of Cs deposition on the field emission (FE) properties of single-walled carbon nanotube (SWNT) bundles were studied. In addition, a comparative study was made on the effects of O2, Ar and H2 gases on the field emission properties of SWNT bundles and multiwall carbon nanotubes (MWNTs). We observed that Cs deposition decreases the turn-on field for FE by a factor of 2.1 - 2.9 and increases the FE current by 6 orders of magnitude. After Cs deposition, the FE current versus voltage (I-V) curves showed non-Fowler-Nordheim behavior at large currents consistent with tunneling from adsorbate states. At lower currents, the ratio of the slope of the FE I-V curves before and after Cs deposition was approximately 2.1. Exposure to N2 does not decrease the FE current, while exposure to O2 decreases the FE current. Our results show that cesiated SWNT bundles have great potential as economical and reliable vacuum electron sources. We find that H2 and Ar gases do not significantly affect the FE properties of SWNTs or MWNTs. O2 temporarily reduces the FE current and increases the turn-on voltage of SWNTs. Full recovery of these properties occurred after operation in UHV. The higher operating voltages in an O2 environment caused a permanent decrease of FE current and increase in turn-on field of MWNTs. The ratios of the slopes before and after O2 exposure were approximately 1.04 and 0.82 for SWNTs and MWNTs, respectively. SWNTs compared to MWNTs would appear to make more economical and reliable vacuum electron sources.
Date: May 2002
Creator: Wadhawan, Atul
Partner: UNT Libraries

Effects of Discharge Tube Geometry on Plasma Ion Oscillations

Description: This study considers the effect, on plasma ion oscillations, of various lengths of discharge tubes as well as various cross sections of discharge tubes. Four different gases were used in generating the plasma. Gas pressure and discharge voltage and current were varied to obtain a large number of signals. A historical survey is given to familiarize the reader with the field. The experimental equipment and procedure used in obtaining data is given. An analysis of the data obtained is presented along with possible explanations for the observed phenomena. Suggestions for future study are made.
Date: May 1975
Creator: Simmons, David Warren
Partner: UNT Libraries

Effects of Dissipation on Propagation of Surface Electromagnetic and Acoustic Waves

Description: With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. with this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. the first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an efort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. a dielectric-metal-¬dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. an equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. in the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the ...
Date: May 2012
Creator: Nagaraj, Nagaraj
Partner: UNT Libraries

Effects of Quantum Coherence and Interference

Description: Quantum coherence and interference (QCI) is a phenomenon that takes place in all multi-level atomic systems interacting with multiple lasers. In this work QCI is used to create several interesting effects like lasing without inversion (LWI), controlling group velocity of light to extreme values, controlling the direction of propagation through non-linear phase matching condition and for controlling the correlations in field fluctuations. Controlling group velocity of light is very interesting because of many novel applications it can offer. One of the unsolved problems in this area is to achieve a slow and fast light which can be tuned continuously as a function of frequency. We describe a method for creation of tunable slow and fast light by controlling intensity of incident laser fields using QCI effects. Lasers are not new to the modern world but an extreme ultra-violet laser or a x-ray laser is definitely one of the most desirable technologies today. Using QCI, we describe a method to realize lasing at high frequencies by creating lasing without inversion. Role of QCI in creating correlations and anti-correlations, which are generated by vacuum fluctuations, in a three level lambda system coupled to two strong fields is discussed.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: August 2013
Creator: Davuluri, Subrahmanya Bhima Sankar
Partner: UNT Libraries

The Effects of Residual Gases on the Field Emission Properties of ZnO, GaN, ZnS Nanostructures, and the Effects of Light on the Resistivity of Graphene

Description: In this dissertation, I present that at a vacuum of 3×10-7 Torr, residual O2, CO2, H2 and Ar exposure do not significantly degrade the field emission (FE) properties of ZnO nanorods, but N2 exposure significantly does. I propose that this could be due to the dissociation of N2 into atomic nitrogen species and the reaction of such species with ZnO. I also present the effects of O2, CO2, H2O, N2, H2, and Ar residual gas exposure on the FE properties of GaN and ZnS nanostructure. A brief review of growth of ZnO, GaN and ZnS is provided. In addition, Cs deposition on GaN nanostructures at ultra-high vacuum results in 30% decrease in turn-on voltage and 60% in work function. The improvement in FE properties could be due to a Cs-induced space-charge layer at the surface that reduces the barrier for FE and lowers the work function. I describe a new phenomenon, in which the resistivity of CVD-grown graphene increases to a higher saturated value under light exposure, and depends on the wavelength of the light—the shorter the wavelength, the higher the resistivity. First-principle calculations and theoretical analysis based on density functional theory show that (1) a water molecule close to a graphene defect is easier to be split than that of the case of no defect existing and (2) there are a series of meta-stable partially disassociated states for an interfacial water molecule. Calculated disassociation energies are from 2.5 eV to 4.6 eV, that match the experimental observation range of light wavelength from visible to 254 nm UV light under which the resistivity of CVD-grown graphene is increased.
Date: May 2014
Creator: Mo, Yudong
Partner: UNT Libraries

Electrical Conduction Mechanisms in the Disordered Material System P-type Hydrogenated Amorphous Silicon

Description: The electrical and optical properties of boron doped hydrogenated amorphous silicon thin films (a-Si) were investigated to determine the effect of boron and hydrogen incorporation on carrier transport. The a-Si thin films were grown by plasma enhanced chemical vapor deposition (PECVD) at various boron concentrations, hydrogen dilutions, and at differing growth temperatures. The temperature dependent conductivity generally follows the hopping conduction model. Above a critical temperature, the dominant conduction mechanism is Mott variable range hopping conductivity (M-VRH), where p = ¼, and the carrier hopping depends on energy. However, at lower temperatures, the coulomb interaction between charge carriers becomes important and Efros-Shklosvkii variable hopping (ES-VRH) conduction, where p=1/2, must be included to describe the total conductivity. To correlate changes in electrical conductivity to changes in the local crystalline order, the transverse optical (TO) and transverse acoustic (TA) modes of the Raman spectra were studied to relate changes in short- and mid-range order to the effects of growth temperature, boron, and hydrogen incorporation. With an increase of hydrogen and/or growth temperature, both short and mid-range order improve, whereas the addition of boron results in the degradation of short range order. It is seen that there is a direct correlation between the electrical conductivity and changes in the short and mid-range order resulting from the passivation of defects by hydrogen and the creation of trap states by boron. This work was done under the ARO grant W911NF-10-1-0410, William W. Clark Program Manager. The samples were provided by L-3 Communications.
Date: December 2014
Creator: Shrestha, Kiran (Engineer)
Partner: UNT Libraries

Electrical Conductivity in Thin Films

Description: This thesis deals with electrical conductivity in thin films. Classical and quantum size effects in conductivity are discussed including some experimental evidence of quantum size effects. The component conductivity along the applied electric field of a thin film in a transverse magnetic field is developed in a density matrix method.
Date: May 1973
Creator: Meyer, Frederick Otto
Partner: UNT Libraries

An Electro- Magneto-static Field for Confinement of Charged Particle Beams and Plasmas

Description: A system is presented that is capable of confining an ion beam or plasma within a region that is essentially free of applied fields. An Artificially Structured Boundary (ASB) produces a spatially periodic set of magnetic field cusps that provides charged particle confinement. Electrostatic plugging of the magnetic field cusps enhances confinement. An ASB that has a small spatial period, compared to the dimensions of a confined plasma, generates electro- magneto-static fields with a short range. An ASB-lined volume thus constructed creates an effectively field free region near its center. It is assumed that a non-neutral plasma confined within such a volume relaxes to a Maxwell-Boltzmann distribution. Space charge based confinement of a second species of charged particles is envisioned, where the second species is confined by the space charge of the first non-neutral plasma species. An electron plasma confined within an ASB-lined volume can potentially provide confinement of a positive ion beam or positive ion plasma. Experimental as well as computational results are presented in which a plasma or charged particle beam interact with the electro- magneto-static fields generated by an ASB. A theoretical model is analyzed and solved via self-consistent computational methods to determine the behavior and equilibrium conditions of a relaxed plasma. The equilibrium conditions of a relaxed two species plasma are also computed. In such a scenario, space charge based electrostatic confinement is predicted to occur where a second plasma species is confined by the space charge of the first plasma species. An experimental apparatus with cylindrical symmetry that has its interior surface lined with an ASB is presented. This system was developed by using a simulation of the electro- magneto-static fields present within the trap to guide mechanical design. The construction of the full experimental apparatus is discussed. Experimental results that show the characteristics of ...
Date: May 2014
Creator: Pacheco, Josè L.
Partner: UNT Libraries

Electromagnetically Modulated Sonic Structures

Description: Phononic crystals are structures composed of periodically arranged scatterers in a background medium that affect the transmission of elastic waves. They have garnered much interest in recent years for their macro-scale properties that can be modulated by the micro-scale components. The elastic properties of the composite materials, the contrast in the elastic properties of the composite materials, and the material arrangement all directly affect how an elastic wave will behave as it propagates through the sonic structure. The behavior of an elastic wave in a periodic structure is revealed in its transmission bandstructure, and modification of any the elastic parameters will result in tuning of the band structure. In this dissertation, a phononic crystal with properties that can be modulated using electromagnetic radiation, and more specifically, radio-frequency (RF) light will be presented.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2014
Creator: Walker, Ezekiel Lee
Partner: UNT Libraries

Electron Density and Collision Frequency Studies Using a Resonant Microwave Cavity as a Probe

Description: Electron densities and collision frequencies were obtained on a number of gases in a dc discharge at low pressures (0.70-2mm of Hg). These measurements were performed by microwave probing of a filament of the dc discharge placed coaxially in a resonant cavity operating in a TM₀₁₀ mode. The equipment and techniques for making the microwave measurements employing the resonant cavity are described. One of the main features of this investigation is the technique of differentiating the resonance signal of the loaded cavity in order to make accurate measurements of the resonant frequency and half-power point frequencies.
Date: May 1973
Creator: Freeman, Ronald Harold
Partner: UNT Libraries

Electron-Ion Time-of-Flight Coincidence Measurements of K-K Electron Capture, Cross Sections for Nitrogen, Methane, Ethylene, Ethane, Carbon Dioxide and Argon (L-K) Targets

Description: Protons with energies ranging from 0.4 to 2.0 MeV were used to measure K-shell vacancy production cross sections (oVK) for N_2, CH_4, C_2H_4, C_2H_6, and CO_2 gas targets under single collision conditions. An electron-ion time-of-flight coincidence technique was used to determind the ration of the K-K electron capture cross section, OECK, to the K-vacancy production cross section, oVK. These ratios were then combined with the measured values of oVK to extract the K-K electron capture cross sections. Measurements were also made for protons of the same energy range but with regard to L-shell vacancy production and L-K electron capture for Ar targets. In addition, K-K electron capture cross sections were measured for 1.0 to 2.0 Mev 42He^_ ions on CH_4.
Date: May 1986
Creator: Toten, Arvel D.
Partner: UNT Libraries

Electron Transport in Bismuth at Liquid Helium Tempratures

Description: To obtain information on the band structure of bismuth, galvanomagnetic potentials were measured in a single crystal at liquid-helium and liquid-nitrogen temperatures. These measurements were analyzed for information on the different carriers, particularly for the existence of a high-mobility band of holes.
Date: May 1964
Creator: Newell, James M.
Partner: UNT Libraries

Electrostatic Effects in III-V Semiconductor Based Metal-optical Nanostructures

Description: The modification of the band edge or emission energy of semiconductor quantum well light emitters due to image charge induced phenomenon is an emerging field of study. This effect observed in quantum well light emitters is critical for all metal-optics based light emitters including plasmonics, or nanometallic electrode based light emitters. This dissertation presents, for the first time, a systematic study of the image charge effect on semiconductor–metal systems. the necessity of introducing the image charge interactions is demonstrated by experiments and mathematical methods for semiconductor-metal image charge interactions are introduced and developed.
Date: May 2012
Creator: Gryczynski, Karol Grzegorz
Partner: UNT Libraries

Electrostatic Mechanism of Emission Enhancement in Hybrid Metal-semiconductor Light-emitting Heterostructures

Description: III-V nitrides have been put to use in a variety of applications including laser diodes for modern DVD devices and for solid-state white lighting. Plasmonics has come to the foreground over the past decade as a means for increasing the internal quantum efficiency (IQE) of devices through resonant interaction with surface plasmons which exist at metal/dielectric interfaces. Increases in emission intensity of an order of magnitude have been previously reported using silver thin-films on InGaN/GaN MQWs. the dependence on resonant interaction between the plasmons and the light emitter limits the applications of plasmonics for light emission. This dissertation presents a new non-resonant mechanism based on electrostatic interaction of carriers with induced image charges in a nearby metallic nanoparticle. Enhancement similar in strength to that of plasmonics is observed, without the restrictions imposed upon resonant interactions. in this work we demonstrate several key features of this new interaction, including intensity-dependent saturation, increase in the radiative recombination lifetime, and strongly inhomogeneous light emission. We also present a model for the interaction based on the aforementioned image charge interactions. Also discussed are results of work done in the course of this research resulting in the development of a novel technique for strain measurement in light-emitting structures. This technique makes use of a spectral fitting model to extract information about electron-phonon interactions in the sample which can then be related to strain using theoretical modeling.
Date: May 2012
Creator: Llopis, Antonio
Partner: UNT Libraries

Emergence of Complexity from Synchronization and Cooperation

Description: The dynamical origin of complexity is an object of intense debate and, up to moment of writing this manuscript, no unified approach exists as to how it should be properly addressed. This research work adopts the perspective of complexity as characterized by the emergence of non-Poisson renewal processes. In particular I introduce two new complex system models, namely the two-state stochastic clocks and the integrate-and-fire stochastic neurons, and investigate its coupled dynamics in different network topologies. Based on the foundations of renewal theory, I show how complexity, as manifested by the occurrence of non-exponential distribution of events, emerges from the interaction of the units of the system. Conclusion is made on the work's applicability to explaining the dynamics of blinking nanocrystals, neuron interaction in the human brain, and synchronization processes in complex networks.
Date: May 2008
Creator: Geneston, Elvis L.
Partner: UNT Libraries

Energy Distribution of Sputtered Neutral Atoms from a Multilayer Target

Description: Energy distribution measurements of sputtered neutral particles contribute to the general knowledge of sputtering, a common technique for surface analysis. In this work emphasis was placed on the measurement of energy distribution of sputtered neutral atoms from different depths. The liquid Ga-In eutectic alloy as a sample target for this study was ideal due to an extreme concentration ratio gradient between the top two monolayers. In pursuing this study, the method of sputter-initiated resonance ionization spectroscopy (SIRIS) was utilized. SIRIS employs a pulsed ion beam to initiate sputtering and tunable dye lasers for resonance ionization. Observation of the energy distribution was achieved with a position-sensitive detector. The principle behind the detector's energy resolution is time of flight (TOF) spectroscopy. For this specific detector, programmed time intervals between the sputtering pulse at the target and the ionizing laser pulse provided information leading to the energy distribution of the secondary neutral particles. This experiment contributes data for energy distributions of sputtered neutral particles to the experimental database, required by theoretical models and computer simulations for the sputtering phenomenon.
Date: August 2000
Creator: Bigelow, Alan W.
Partner: UNT Libraries

Energy Losses of Protons Projected through a Plasma Due to Collisions with Electrons of the Plasma for a Variety of Non-Maxwellian Electron Velocity Distributions

Description: The purpose of this thesis is to study energy losses suffered by protons in traversing a plasma through collision with the electrons of the plasma. For these electrons a variety of non-Maxwellian velocity distributions are assumed.
Date: August 1961
Creator: Kregel, Mark Douglas
Partner: UNT Libraries