UNT Theses and Dissertations - Browse

ABOUT BROWSE FEED

Steepest Sescent on a Uniformly Convex Space

Description: This paper contains four main ideas. First, it shows global existence for the steepest descent in the uniformly convex setting. Secondly, it shows existence of critical points for convex functions defined on uniformly convex spaces. Thirdly, it shows an isomorphism between the dual space of H^{1,p}[0,1] and the space H^{1,q}[0,1] where p > 2 and {1/p} + {1/q} = 1. Fourthly, it shows how the Beurling-Denny theorem can be extended to find a useful function from H^{1,p}[0,1] to L_{p}[1,0] where p > 2 and addresses the problem of using that function to establish a relationship between the ordinary and the Sobolev gradients. The paper contains some numerical experiments and two computer codes.
Date: August 1995
Creator: Zahran, Mohamad M.
Partner: UNT Libraries

Sufficient Conditions for Uniqueness of Positive Solutions and Non Existence of Sign Changing Solutions for Elliptic Dirichlet Problems

Description: In this paper we study the uniqueness of positive solutions as well as the non existence of sign changing solutions for Dirichlet problems of the form $$\eqalign{\Delta u + g(\lambda,\ u) &= 0\quad\rm in\ \Omega,\cr u &= 0\quad\rm on\ \partial\Omega,}$$where $\Delta$ is the Laplace operator, $\Omega$ is a region in $\IR\sp{N}$, and $\lambda>0$ is a real parameter. For the particular function $g(\lambda,\ u)=\vert u\vert\sp{p}u+\lambda$, where $p={4\over N-2}$, and $\Omega$ is the unit ball in $\IR\sp{N}$ for $N\ge3$, we show that there are no sign changing solutions for small $\lambda$ and also we show that there are no large sign changing solutions for $\lambda$ in a compact set. We also prove uniqueness of positive solutions for $\lambda$ large when $g(\lambda,\ u)=\lambda f(u)$, where f is an increasing, sublinear, concave function with f(0) $<$ 0, and the exterior boundary of $\Omega$ is convex. In establishing our results we use a number of methods from non-linear functional analysis such as rescaling arguments, methods of order, estimation near the boundary, and moving plane arguments.
Date: August 1995
Creator: Hassanpour, Mehran
Partner: UNT Libraries

Continuous, Nowhere-Differentiable Functions with no Finite or Infinite One-Sided Derivative Anywhere

Description: In this paper, we study continuous functions with no finite or infinite one-sided derivative anywhere. In 1925, A. S. Beskovitch published an example of such a function. Since then we call them Beskovitch functions. This construction is presented in chapter 2, The example was simple enough to clear the doubts about the existence of Besicovitch functions. In 1932, S. Saks showed that the set of Besicovitch functions is only a meager set in C[0,1]. Thus the Baire category method for showing the existence of Besicovitch functions cannot be directly applied. A. P. Morse in 1938 constructed Besicovitch functions. In 1984, Maly revived the Baire category method by finding a non-empty compact subspace of (C[0,1], || • ||) with respect to which the set of Morse-Besicovitch functions is comeager.
Date: December 1994
Creator: Lee, Jae S. (Jae Seung)
Partner: UNT Libraries

Cycles and Cliques in Steinhaus Graphs

Description: In this dissertation several results in Steinhaus graphs are investigated. First under some further conditions imposed on the induced cycles in steinhaus graphs, the order of induced cycles in Steinhaus graphs is at most [(n+3)/2]. Next the results of maximum clique size in Steinhaus graphs are used to enumerate the Steinhaus graphs having maximal cliques. Finally the concept of jumbled graphs and Posa's Lemma are used to show that almost all Steinhaus graphs are Hamiltonian.
Date: December 1994
Creator: Lim, Daekeun
Partner: UNT Libraries

Intuition versus Formalization: Some Implications of Incompleteness on Mathematical Thought

Description: This paper describes the tension between intuition about number theory and attempts to formalize it. I will first examine the root of the dilemma, Godel's First Incompleteness Theorem, which demonstrates that in any reasonable formalization of number theory, there will be independent statements. After proving the theorem, I consider some of its consequences on intuition, focusing on Freiling's "Dart Experiment" which is based on our usual notion of the real numbers as a line. This experiment gives an apparent refutation of the Axiom of Choice and the Continuum Hypothesis; however, it also leads to an equally apparent paradox. I conclude that such paradoxes are inevitable as the formalization of mathematics takes us further from our initial intuitions.
Date: August 1994
Creator: Lindman, Phillip A. (Phillip Anthony)
Partner: UNT Libraries

Topics in Fractal Geometry

Description: In this dissertation, we study fractal sets and their properties, especially the open set condition, Hausdorff dimensions and Hausdorff measures for certain fractal constructions.
Date: August 1994
Creator: Wang, JingLing
Partner: UNT Libraries

Using Steepest Descent to Find Energy-Minimizing Maps Satisfying Nonlinear Constraints

Description: The method of steepest descent is applied to a nonlinearly constrained optimization problem which arises in the study of liquid crystals. Let Ω denote the region bounded by two coaxial cylinders of height 1 with the outer cylinder having radius 1 and the inner having radius ρ. The problem is to find a mapping, u, from Ω into R^3 which agrees with a given function v on the surfaces of the cylinders and minimizes the energy function over the set of functions in the Sobolev space H^(1,2)(Ω; R^3) having norm 1 almost everywhere. In the variational formulation, the norm 1 condition is emulated by a constraint function B. The direction of descent studied here is given by a projected gradient, called a B-gradient, which involves the projection of a Sobolev gradient onto the tangent space for B. A numerical implementation of the algorithm, the results of which agree with the theoretical results and which is independent of any strong properties of the domain, is described. In chapter 2, the Sobolev space setting and a significant projection in the theory of Sobolev gradients are discussed. The variational formulation is introduced in Chapter 3, where the issues of differentiability and existence of gradients are explored. A theorem relating the B-gradient to the theory of Lagrange multipliers is stated as well. Basic theorems regarding the continuous steepest descent given by the Sobolev and B-gradients are stated in Chapter 4, and conditions for convergence in the application to the liquid crystal problem are given as well. Finally, in Chapter 5, the algorithm is described and numerical results are examined.
Date: August 1994
Creator: Garza, Javier, 1965-
Partner: UNT Libraries

Multifractal Measures

Description: The purpose of this dissertation is to introduce a natural and unifying multifractal formalism which contains the above mentioned multifractal parameters, and gives interesting results for a large class of natural measures. In Part 2 we introduce the proposed multifractal formalism and study it properties. We also show that this multifractal formalism gives natural and interesting results when applied to (nonrandom) graph directed self-similar measures in Rd and "cookie-cutter" measures in R. In Part 3 we use the multifractal formalism introduced in Part 2 to give a detailed discussion of the multifractal structure of random (and hence, as a special case, non-random) graph directed self-similar measures in R^d.
Date: May 1994
Creator: Olsen, Lars
Partner: UNT Libraries

The Continuous Wavelet Transform and the Wave Front Set

Description: In this paper I formulate an explicit wavelet transform that, applied to any distribution in S^1(R^2), yields a function on phase space whose high-frequency singularities coincide precisely with the wave front set of the distribution. This characterizes the wave front set of a distribution in terms of the singularities of its wavelet transform with respect to a suitably chosen basic wavelet.
Date: December 1993
Creator: Navarro, Jaime
Partner: UNT Libraries

Property (H*) and Differentiability in Banach Spaces

Description: A continuous convex function on an open interval of the real line is differentiable everywhere except on a countable subset of its domain. There has been interest in the problem of characterizing those Banach spaces where the continuous functions exhibit similar differentiability properties. In this paper we show that if a Banach space E has property (H*) and B_E• is weak* sequentially compact, then E is an Asplund space. In the case where the space is weakly compactly generated, it is shown that property (H*) is equivalent for the space to admit an equivalent Frechet differentiable norm. Moreover, we define the SH* spaces, show that every SH* space is an Asplund space, and show that every weakly sequentially complete SH* space is reflexive. Also, we study the relation between property (H*) and the asymptotic norming property (ANP). By a slight modification of the ANP we define the ANP*, and show that if the dual of a Banach spaces has the ANP*-I then the space admits an equivalent Fréchet differentiability norm, and that the ANP*-II is equivalent to the space having property (H*) and the closed unit ball of the dual is weak* sequentially compact. Also, we show that in the dual of a weakly countably determined Banach space all the ANP-K'S are equivalent, and they are equivalent for the predual to have property (H*).
Date: August 1993
Creator: Obeid, Ossama A.
Partner: UNT Libraries

Universal Branched Coverings

Description: In this paper, the study of k-fold branched coverings for which the branch set is a stratified set is considered. First of all, the existence of universal k-fold branched coverings over CW-complexes with stratified branch set is proved using Brown's Representability Theorem. Next, an explicit construction of universal k-fold branched coverings over manifolds is given. Finally, some homotopy and homology groups are computed for some specific examples of Universal k-fold branched coverings.
Date: May 1993
Creator: Tejada, Débora
Partner: UNT Libraries

Characterizations of Some Combinatorial Geometries

Description: We give several characterizations of partition lattices and projective geometries. Most of these characterizations use characteristic polynomials. A geometry is non—splitting if it cannot be expressed as the union of two of its proper flats. A geometry G is upper homogeneous if for all k, k = 1, 2, ... , r(G), and for every pair x, y of flats of rank k, the contraction G/x is isomorphic to the contraction G/y. Given a signed graph, we define a corresponding signed—graphic geometry. We give a characterization of supersolvable signed graphs. Finally, we give the following characterization of non—splitting supersolvable signed-graphic geometries : If a non-splitting supersolvable ternary geometry does not contain the Reid geometry as a subgeometry, then it is signed—graphic.
Date: August 1992
Creator: Yoon, Young-jin
Partner: UNT Libraries

Uniqueness of Positive Solutions for Elliptic Dirichlet Problems

Description: In this paper we consider the question of uniqueness of positive solutions for Dirichlet problems of the form - Δ u(x)= g(λ,u(x)) in B, u(x) = 0 on ϑB, where A is the Laplace operator, B is the unit ball in RˆN, and A>0. We show that if g(λ,u)=uˆ(N+2)/(N-2) + λ, that is g has "critical growth", then large positive solutions are unique. We also prove uniqueness of large solutions when g(λ,u)=A f(u) with f(0) < 0, f "superlinear" and monotone. We use a number of methods from nonlinear functional analysis such as variational identities, Sturm comparison theorems and methods of order. We also present a regularity result on linear elliptic equation where a coefficient has critical growth.
Date: December 1990
Creator: Ali, Ismail, 1961-
Partner: UNT Libraries

Weakly Dense Subsets of Homogeneous Complete Boolean Algebras

Description: The primary result from this dissertation is following inequality: d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}) in ZFC, where B is a homogeneous complete Boolean algebra, d(B) is the density, wd(B) is the weak density, and c(B) is the cellularity of B. Chapter II of this dissertation is a general overview of homogeneous complete Boolean algebras. Assuming the existence of a weakly inaccessible cardinal, we give an example of a homogeneous complete Boolean algebra which does not attain its cellularity. In chapter III, we prove that for any integer n > 1, wd_2(B) = wd_n(B). Also in this chapter, we show that if X⊂B is κ—weakly dense for 1 < κ < sat(B), then sup{wd_κ(B):κ < sat(B)} = d(B). In chapter IV, we address the following question: If X is weakly dense in a homogeneous complete Boolean algebra B, does there necessarily exist b € B\{0} such that {x∗b: x ∈ X} is dense in B|b = {c € B: c ≤ b}? We show that the answer is no for collapsing algebras. In chapter V, we give new proofs to some well known results concerning supporting antichains. A direct consequence of these results is the relation c(B) < wd(B), i.e., the weak density of a homogeneous complete Boolean algebra B is at least as big as the cellularity. Also in this chapter, we introduce discernible sets. We prove that a discernible set of cardinality no greater than c(B) cannot be weakly dense. In chapter VI, we prove the main result of this dissertation, i.e., d(B) ≤ min(2^< wd(B),sup{λ^c(B): λ < wd(B)}). In chapter VII, we list some unsolved problems concerning this dissertation.
Date: August 1990
Creator: Bozeman, Alan Kyle
Partner: UNT Libraries

Hausdorff, Packing and Capacity Dimensions

Description: In this thesis, Hausdorff, packing and capacity dimensions are studied by evaluating sets in the Euclidean space R^. Also the lower entropy dimension is calculated for some Cantor sets. By incorporating technics of Munroe and of Saint Raymond and Tricot, outer measures are created. A Vitali covering theorem for packings is proved. Methods (by Taylor and Tricot, Kahane and Salem, and Schweiger) for determining the Hausdorff and capacity dimensions of sets using probability measures are discussed and extended. The packing pre-measure and measure are shown to be scaled after an affine transformation. A Cantor set constructed by L.D. Pitt is shown to be dimensionless using methods developed in this thesis. A Cantor set is constructed for which all four dimensions are different. Graph directed constructions (compositions of similitudes follow a path in a directed graph) used by Mauldin and Willjams are presented. Mauldin and Williams calculate the Hausdorff dimension, or, of the object of a graph directed construction and show that if the graph is strongly connected, then the a—Hausdorff measure is positive and finite. Similar results will be shown for the packing dimension and the packing measure. When the graph is strongly connected, there is a constant so that the constant times the Hausdorff measure is greater than or equal to the packing measure when a subset of the realization is evaluated. Self—affine Sierpinski carpets, which have been analyzed by McMullen with respect to their Hausdorff dimension and capacity dimension, are analyzed with respect to their packing dimension. Conditions under which the Hausdorff measure of the construction object is positive and finite are given.
Date: August 1989
Creator: Spear, Donald W.
Partner: UNT Libraries

The Maximum Size of Combinatorial Geometries Excluding Wheels and Whirls as Minors

Description: We show that the maximum size of a geometry of rank n excluding the (q + 2)-point line, the 3-wheel W_3, and the 3-whirl W^3 as minor is (n - 1)q + 1, and geometries of maximum size are parallel connections of (q + 1)-point lines. We show that the maximum size of a geometry of rank n excluding the 5-point line, the 4-wheel W_4, and the 4-whirl W^4 as minors is 6n - 5, for n ≥ 3. Examples of geometries having rank n and size 6n - 5 include parallel connections of the geometries V_19 and PG(2,3).
Date: August 1989
Creator: Hipp, James W. (James William), 1956-
Partner: UNT Libraries

Applications of Graph Theory and Topology to Combinatorial Designs

Description: This dissertation is concerned with the existence and the isomorphism of designs. The first part studies the existence of designs. Chapter I shows how to obtain a design from a difference family. Chapters II to IV study the existence of an affine 3-(p^m,4,λ) design where the v-set is the Galois field GF(p^m). Associated to each prime p, this paper constructs a graph. If the graph has a 1-factor, then a difference family and hence an affine design exists. The question arises of how to determine when the graph has a 1-factor. It is not hard to see that the graph is connected and of even order. Tutte's theorem shows that if the graph is 2-connected and regular of degree three, then the graph has a 1-factor. By using the concept of quadratic reciprocity, this paper shows that if p Ξ 53 or 77 (mod 120), the graph is almost regular of degree three, i.e., every vertex has degree three, except two vertices each have degree tow. Adding an extra edge joining the two vertices with degree tow gives a regular graph of degree three. Also, Tutte proved that if A is an edge of the graph satisfying the above conditions, then it must have a 1-factor which contains A. The second part of the dissertation is concerned with determining if two designs are isomorphic. Here the v-set is any group G and translation by any element in G gives a design automorphism. Given a design B and its difference family D, two topological spaces, B and D, are constructed. We give topological conditions which imply that a design isomorphism is a group isomorphism.
Date: December 1988
Creator: Somporn Sutinuntopas
Partner: UNT Libraries

Operators on Continuous Function Spaces and Weak Precompactness

Description: If T:C(H,X)-->Y is a bounded linear operator then there exists a unique weakly regular finitely additive set function m:-->L(X,Y**) so that T(f) = ∫Hfdm. In this paper, bounded linear operators on C(H,X) are studied in terms the measure given by this representation theorem. The first chapter provides a brief history of representation theorems of these classes of operators. In the second chapter the represenation theorem used in the remainder of the paper is presented. If T is a weakly compact operator on C(H,X) with representing measure m, then m(A) is a weakly compact operator for every Borel set A. Furthermore, m is strongly bounded. Analogous statements may be made for many interesting classes of operators. In chapter III, two classes of operators, weakly precompact and QSP, are studied. Examples are provided to show that if T is weakly precompact (QSP) then m(A) need not be weakly precompact (QSP), for every Borel set A. In addition, it will be shown that weakly precompact and GSP operators need not have strongly bounded representing measures. Sufficient conditions are provided which guarantee that a weakly precompact (QSP) operator has weakly precompact (QSP) values. A sufficient condition for a weakly precomact operator to be strongly bounded is given. In chapter IV, weakly precompact subsets of L1(μ,X) are examined. For a Banach space X whose dual has the Radon-Nikodym property, it is shown that the weakly precompact subsets of L1(μ,X) are exactly the uniformly integrable subsets of L1(μ,X). Furthermore, it is shown that this characterization does not hold in Banach spaces X for which X* does not have the weak Radon-Nikodym property.
Date: August 1988
Creator: Abbott, Catherine Ann
Partner: UNT Libraries

Dually Semimodular Consistent Lattices

Description: A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all the elements covering x, and the rank of x; the maximum reach of all elements in L is the reach of L. Sharp lower bounds for the total number of elements and the number of elements of a given reach in a semimodular consistent lattice given the rank, the reach, and the number of join-irreducibles are found. Extremal lattices attaining these bounds are described. Similar results are then obtained for finite dually semimodular consistent lattices.
Date: May 1988
Creator: Gragg, Karen E. (Karen Elizabeth)
Partner: UNT Libraries