Search Results

Consistency in Lattices
Let L be a lattice. For x ∈ L, we say x is a consistent join-irreducible if x V y is a join-irreducible of the lattice [y,1] for all y in L. We say L is consistent if every join-irreducible of L is consistent. In this dissertation, we study the notion of consistent elements in semimodular lattices.
Some Properties of Noetherian Rings
This paper is an investigation of several basic properties of noetherian rings. Chapter I gives a brief introduction, statements of definitions, and statements of theorems without proof. Some of the main results in the study of noetherian rings are proved in Chapter II. These results include proofs of the equivalence of the maximal condition, the ascending chain condition, and that every ideal is finitely generated. Some other results are that if a ring R is noetherian, then R[x] is noetherian, and that if every prime ideal of a ring R is finitely generated, then R is noetherian.
The Mean Integral
The purpose of this paper is to examine properties of the mean integral. The mean integral is compared with the regular integral. If [a;b] is an interval, f is quasicontinuous on [a;b] and g has bounded variation on [a;b], then the man integral of f with respect to g exists on [a;b]. The following theorem is proved. If [a*;b*] and [a;b] each is an interval and h is a function from [a*;b*] into R, then the following two statements are equivalent: 1) If f is a function from [a;b] into [a*;b*], gi is a function from [a;b] into R with bounded variation and (m)∫^b_afdg exists then (m)∫^b_ah(f)dg exists. 2) h is continuous.
An Existence Theorem for an Integral Equation
The principal theorem of this thesis is a theorem by Peano on the existence of a solution to a certain integral equation. The two primary notions underlying this theorem are uniform convergence and equi-continuity. Theorems related to these two topics are proved in Chapter II. In Chapter III we state and prove a classical existence and uniqueness theorem for an integral equation. In Chapter IV we consider the approximation on certain functions by means of elementary expressions involving "bent line" functions. The last chapter, Chapter V, is the proof of the theorem by Peano mentioned above. Also included in this chapter is an example in which the integral equation has more than one solution. The first chapter sets forth basic definitions and theorems with which the reader should be acquainted.
Nonlinear Boundary Conditions in Sobolev Spaces
The method of dual steepest descent is used to solve ordinary differential equations with nonlinear boundary conditions. A general boundary condition is B(u) = 0 where where B is a continuous functional on the nth order Sobolev space Hn[0.1J. If F:HnCO,l] —• L2[0,1] represents a 2 differential equation, define *(u) = 1/2 IIF < u) li and £(u) = 1/2 l!B(u)ll2. Steepest descent is applied to the functional 2 £ a * + £. Two special cases are considered. If f:lR —• R is C^(2), a Type I boundary condition is defined by B(u) = f(u(0),u(1)). Given K: [0,1}xR—•and g: [0,1] —• R of bounded variation, a Type II boundary condition is B(u) = ƒ1/0K(x,u(x))dg(x).
The Reciprocal Dunford-Pettis and Radon-Nikodym Properties in Banach Spaces
In this paper we give a characterization theorem for the reciprocal Dunford-Pettis property as defined by Grothendieck. The relationship of this property to Pelczynski's property V is examined. In particular it is shown that every Banach space with property V has the reciprocal Dunford-Pettis property and an example is given to show that the converse fails to hold. Moreover the characterizations of property V and the reciprocal Dunford-Pettis property lead to the definitions of property V* and property RDP* respectively. Me compare and contrast results for the reciprocal Dunford-Pettis property and property RDP* with those for properties V and V*. In the final chapter we use a result of Brooks to obtain a characterization for the Radon-Nikodým property.
Algebraic Numbers and Topologically Equivalent Measures
A set-theoretical point of view to study algebraic numbers has been introduced. We extend a result of Navarro-Bermudez concerning shift invariant measures in the Cantor space which are topologically equivalent to shift invariant measures which correspond to some algebraic integers. It is known that any transcendental numbers and rational numbers in the unit interval are not binomial. We proved that there are algebraic numbers of degree greater than two so that they are binomial numbers. Algebraic integers of degree 2 are proved not to be binomial numbers. A few compositive relations having to do with algebraic numbers on the unit interval have been studied; for instance, rationally related, integrally related, binomially related, B1-related relations. A formula between binomial numbers and binomial coefficients has been stated. A generalized algebraic equation related to topologically equivalent measures has also been stated.
Algorithms of Schensted and Hillman-Grassl and Operations on Standard Bitableaux
In this thesis, we describe Schensted's algorithm for finding the length of a longest increasing subsequence of a finite sequence. Schensted's algorithm also constructs a bijection between permutations of the first N natural numbers and standard bitableaux of size N. We also describe the Hillman-Grassl algorithm which constructs a bijection between reverse plane partitions and the solutions in natural numbers of a linear equation involving hook lengths. Pascal programs and sample output for both algorithms appear in the appendix. In addition, we describe the operations on standard bitableaux corresponding to the operations of inverting and reversing permutations. Finally, we show that these operations generate the dihedral group D_4
Axiom of Choice Equivalences and Some Applications
In this paper several equivalences of the axiom of choice are examined. In particular, the axiom of choice, Zorn's lemma, Tukey's lemma, the Hausdorff maximal principle, and the well-ordering theorem are shown to be equivalent. Cardinal and ordinal number theory is also studied. The Schroder-Bernstein theorem is proven and used in establishing order results for cardinal numbers. It is also demonstrated that the first uncountable ordinal space is unique up to order isomorphism. We conclude by encountering several applications of the axiom of choice. In particular, we show that every vector space must have a Hamel basis and that any two Hamel bases for the same space must have the same cardinality. We establish that the Tychonoff product theorem implies the axiom of choice and see the use of the axiom of choice in the proof of the Hahn- Banach theorem.
Convergence of Infinite Series
The purpose of this paper is to examine certain questions concerning infinite series. The first chapter introduces several basic definitions and theorems from calculus. In particular, this chapter contains the proofs for various convergence tests for series of real numbers. The second chapter deals primarily with the equivalence of absolute convergence, unconditional convergence, bounded multiplier convergence, and c0 multiplier convergence for series of real numbers. Also included in this chapter is a proof that an unconditionally convergent series may be rearranged so that it converges to any real number desired. The third chapter contains a proof of the Silverman-Toeplitz Theorem together with several applications.
Iterative Solution of Linear Boundary Value Problems
The investigation is initially a continuation of Neuberger's work on linear boundary value problems. A very general iterative procedure for solution of these problems is described. The alternating-projection theorem of von Neumann is the mathematical starting point for this study. Later theorems demonstrate the validity of numerical approximation for Neuberger's method under certain conditions. A sampling of differential equations within the scope of our iterative method is given. The numerical evidence is that the procedure works well on neutral-state equations, for which no software is written now.
Product Measure
In this paper we will present two different approaches to the development of product measures. In the second chapter we follow the lead of H. L. Royden in his book Real Analysis and develop product measure in the context of outer measure. The approach in the third and fourth chapters will be the one taken by N. Dunford and J. Schwartz in their book Linear Operators Part I. Specifically, in the fourth chapter, product measures arise almost entirely as a consequence of integration theory. Both developments culminate with proofs of well known theorems due to Fubini and Tonelli.
Universally Measurable Sets And Nonisomorphic Subalgebras
This dissertation is divided into two parts. The first part addresses the following problem: Suppose 𝑣 is a finitely additive probability measure defined on the power set 𝒜 of the integer Z so that each singleton set gets measure zero. Let X be a product space Π/β∈B * Zᵦ where each Zₐ is a copy of the integers. Let 𝒜ᴮ be the algebra of subsets of X generated by the subproducts Π/β∈B * Cᵦ where for all but finitely many β, Cᵦ = Zᵦ. Let 𝑣_B denote the product measure on 𝒜ᴮ which has each factor measure a copy of 𝑣. A subset E of X is said to be 𝑣_B -measurable iff [sic] there is only one finitely additive probability on the algebra generated by 𝒜ᴮ ∪ [E] which extends 𝑣_B. The set E ⊆ X is said to be universally product measurable (u.p.m.) iff [sic] for each finitely additive probability measure μ on 𝒜 which gives each singleton measure zero,E is μ_B -measurable. Two theorems are proved along with generalizations. The second part of this dissertation gives a proof of the following theorem and some generalizations: There are 2ᶜ nonisomorphic subalgebras of the power set algebra of the integers (where c = power of the continuum).
Gateaux Differentiable Points of Simple Type
Every continuous convex function defined on a separable Banach space is Gateaux differentiable on a dense G^ subset of the space E [Mazur]. Suppose we are given a sequence (xn) that Is dense in E. Can we always find a Gateaux differentiable point x such that x = z^=^anxn.for some sequence (an) with infinitely many non-zero terms so that Ση∞=1||anxn|| < co ? According to this paper, such points are called of "simple type," and shown to be dense in E. Mazur's theorem follows directly from the result and Rybakov's theorem (A countably additive vector measure F: E -* X on a cr-field is absolutely continuous with respect to |x*F] for some x* e Xs) can be shown without deep measure theoretic Involvement.
Continua and Related Topics
This paper is a study of continue and related metric spaces, Chapter I is an introductory chapter. Irreducible continua and noncut points are the main topics in Chapter II. The third chapter begins with a few results on locally connected spaces. These results are then used to prove results in locally connected continua. Decomposable and indecomposable continua are dealt with in Chapter IV. Totally disconnected metric spaces are studied in the beginning of Chapter V. Then we see that every compact metric space is a continuous image of the Cantor set. A continuous map from the Cantor set onto [0,1] is constructed. Also, a continuous map from [0,1] onto [0,1]x[0,1] is built, Then an order preserving homeomorphism is constructed from a metric arc onto [0,1],
Finite Difference Methods for Approximating Solutions to the Heat Equation
This paper is concerned with finite difference methods for approximating solutions to the partial differential heat equation. The first chapel gives some introductory background into the physical problem, then motivates three finite difference methods. Chapters II through IV provide statements and proofs for the theorems used in the methods of Chapter I. The final Chapter, V, provides conclusions and an indication of future work. An appendix includes the computer codes written by the author with numerical results.
Fourier Transforms of Functions on a Finite Abelian Group
This paper presents a theory of Fourier transforms of complex-valued functions on a finite abelian group and investigates two applications of this theory. Chapter I is an introduction with remarks on notation. Basic theory, including Pontrvagin duality and the Poisson Summation formula, is the subject of Chapter II. In Chapter III the Fourier transform is viewed as an intertwining operator for certain unitary group representations. The solution of the eigenvalue problem of the Fourier transform of functions on the group Z/n of integers module n leads to a proof of the quadratic reciprocity law in Chapter IV. Chapter V addresses the, use of the Fourier transform in computing.
Sufficient Criteria for Total Differentiability of a Real Valued Function of a Complex Variable in Rn an Extension of H. Rademacher's Result for R²
This thesis provides sufficient conditions for total differentiability almost everywhere of a real-valued function of a complex variable defined on a bounded region in IRn. This thesis extends H. Rademacher's 1918 results in IR2 which culminated in total differentiability, to IRn
Finite Element Solutions to Nonlinear Partial Differential Equations
This paper develops a numerical algorithm that produces finite element solutions for a broad class of partial differential equations. The method is based on steepest descent methods in the Sobolev space H¹(Ω). Although the method may be applied in more general settings, we consider only differential equations that may be written as a first order quasi-linear system. The method is developed in a Hilbert space setting where strong convergence is established for part of the iteration. We also prove convergence for an inner iteration in the finite element setting. The method is demonstrated on Burger's equation and the Navier-Stokes equations as applied to the square cavity flow problem. Numerical evidence suggests that the accuracy of the method is second order,. A documented listing of the FORTRAN code for the Navier-Stokes equations is included.
Geometric Problems in Measure Theory and Parametrizations
This dissertation explores geometric measure theory; the first part explores a question posed by Paul Erdös -- Is there a number c > 0 such that if E is a Lebesgue measurable subset of the plane with λ²(E) (planar measure)> c, then E contains the vertices of a triangle with area equal to one? -- other related geometric questions that arise from the topic. In the second part, "we parametrize the theorems from general topology characterizing the continuous images and the homeomorphic images of the Cantor set, C" (abstract, para. 5).
The Steepest Descent Method Using Finite Elements for Systems of Nonlinear Partial Differential Equations
The purpose of this paper is to develop a general method for using Finite Elements in the Steepest Descent Method. The main application is to a partial differential equation for a Transonic Flow Problem. It is also applied to Burger's equation, Laplace's equation and the minimal surface equation. The entire method is tested by computer runs which give satisfactory results. The validity of certain of the procedures used are proved theoretically. The way that the writer handles finite elements is quite different from traditional finite element methods. The variational principle is not needed. The theory is based upon the calculation of a matrix representation of operators in the gradient of a certain functional. Systematic use is made of local interpolation functions.
Duals and Weak Completeness in Certain Sequence Spaces
In this paper the weak completeness of certain sequence spaces is examined. In particular, we show that each of the sequence spaces c0 and 9, 1 < p < c, is a Banach space. A Riesz representation for the dual space of each of these sequence spaces is given. A Riesz representation theorem for Hilbert space is also proven. In the third chapter we conclude that any reflexive space is weakly (sequentially) complete. We give 01 as an example of a non-reflexive space that is weakly complete. Two examples, c0 and YJ, are given of spaces that fail to be weakly complete.
The Riesz Representation Theorem
In 1909, F. Riesz succeeded in giving an integral represntation for continuous linear functionals on C[0,1]. Although other authors, notably Hadamard and Frechet, had given representations for continuous linear functionals on C[0,1], their results lacked the clarity, elegance, and some of the substance (uniqueness) of Riesz's theorem. Subsequently, the integral representation of continuous linear functionals has been known as the Riesz Representation Theorem. In this paper, three different proofs of the Riesz Representation Theorem are presented. The first approach uses the denseness of the Bernstein polynomials in C[0,1] along with results of Helly to write the continuous linear functionals as Stieltjes integrals. The second approach makes use of the Hahn-Banach Theorem in order to write the functional as an integral. The paper concludes with a detailed presentation of a Daniell integral development of the Riesz Representation Theorem.
Measurable Selection Theorems for Partitions of Polish Spaces into Gδ Equivalence Classes
Let X be a Polish space and Q a measurable partition of X into Gδ equivalence classes. In 1978, S. M. Srivastava proved the existence of a Borel cross section for Q. He asked whether more can be concluded in case each equivalence class is uncountable. This question is answered here in the affirmative. The main result of the author is a proof that shows the existence of a Castaing Representation for Q.
Subdirectly Irreducible Semigroups
Definition 1.1. The ordered pair (S,*) is a semi-group iff S is a set and * is an associative binary operation (multiplication) on S. Notation. A semigroup (S,*) will ordinarily be referred to by the set S, with the multiplication understood. In other words, if (a,b)e SX , then *[(a,b)] = a*b = ab. The proof of the following proposition is found on p. 4 of Introduction to Semigroups, by Mario Petrich. Proposition 1.2. Every semigroup S satisfies the general associative law.
Integrability, Measurability, and Summability of Certain Set Functions
The purpose of this paper is to investigate the integrability, measurability, and summability of certain set functions. The paper is divided into four chapters. The first chapter contains basic definitions and preliminary remarks about set functions and absolute continuity. In Chapter i, the integrability of bounded set functions is investigated. The chapter culminates with a theorem that characterizes the transmission of the integrability of a real function of n bounded set functions. In Chapter III, measurability is defined and a characterization of the transmission of measurability by a function of n variables is provided, In Chapter IV, summability is defined and the summability of set functions is investigated, Included is a characterization of the transmission of summability by a function of n variables.
Complete Ordered Fields
The purpose of this thesis is to study the concept of completeness in an ordered field. Several conditions which are necessary and sufficient for completeness in an ordered field are examined. In Chapter I the definitions of a field and an ordered field are presented and several properties of fields and ordered fields are noted. Chapter II defines an Archimedean field and presents several conditions equivalent to the Archimedean property. Definitions of a complete ordered field (in terms of a least upper bound) and the set of real numbers are also stated. Chapter III presents eight conditions which are equivalent to completeness in an ordered field. These conditions include the concepts of nested intervals, Dedekind cuts, bounded monotonic sequences, convergent subsequences, open coverings, cluster points, Cauchy sequences, and continuous functions.
Interpolation and Approximation
In this paper, there are three chapters. The first chapter discusses interpolation. Here a theorem about the uniqueness of the solution to the general interpolation problem is proven. Then the problem of how to represent this unique solution is discussed. Finally, the error involved in the interpolation and the convergence of the interpolation process is developed. In the second chapter a theorem about the uniform approximation to continuous functions is proven. Then the best approximation and the least squares approximation (a special case of best approximation) is discussed. In the third chapter orthogonal polynomials as discussed as well as bounded linear functionals in Hilbert spaces, interpolation and approximation and approximation in Hilbert space.
Valuations on Fields
This thesis investigates some properties of valuations on fields. Basic definitions and theorems assumed are stated in Capter I. Chapter II introduces the concept of a valuation on a field. Real valuations and non-Archimedean valuations are presented. Chapter III generalizes non-Archimedean valuations. Examples are described in Chapters I and II. A result is the theorem stating that a real valuation of a field K is non-Archimedean if and only if $(a+b) < max4# (a), (b) for all a and b in K. Chapter III generally defines a non-Archimedean valuation as an ordered abelian group. Real non-Archimedean valuations are either discrete or nondiscrete. Chapter III shows that every valuation ring identifies a non-Archimedean valuation and every non-Archimedean valuation identifies a valuation ring.
Hyperspaces
This paper is an exposition of the theory of the hyperspaces 2^X and C(X) of a topological space X. These spaces are obtained from X by collecting the nonempty closed and nonempty closed connected subsets respectively, and are topologized by the Vietoris topology. The paper is organized in terms of increasing specialization of spaces, beginning with T1 spaces and proceeding through compact spaces, compact metric spaces and metric continua. Several basic techniques in hyperspace theory are discussed, and these techniques are applied to elucidate the topological structure of hyperspaces.
R₀ Spaces, R₁ Spaces, And Hyperspaces
The purpose of this paper is to further investigate R0 spaces, R1 spaces, and hyperspaces. The R0 axiom was introduced by N. A. Shanin in 1943. Later, in 1961, A. S. Davis investigated R0 spaces and introduced R1 spaces. Then, in 1975, William Dunham further investigated R1 spaces and proved that several well-known theorems can be generalized from a T2 setting to an R1 setting. In Chapter II R0 and R1 spaces are investigated and additional theorems that can be generalized from a T2 setting to an R1 setting are obtained.
T-Sets of Normed Linear Spaces
This paper is a study of T-sets of normed linear spaces. Geometrical properties of normed linear spaces are developed in terms of intersection properties shared by a subcollection of T-sets of the space and in terms of special spanning properties shared by each T-set of a subcollection of T-sets of the space. A characterization of the extreme points of the unit ball of the dual of a normed linear space is given in terms of the T-sets of the space. Conditions on the collection of T-sets of a normed linear space are determined so that the normed linear space has the property that extreme points of the unit ball of the dual space map canonically to extreme points of the unit ball of the third dual space.
The Wallman Spaces and Compactifications
If X is a topological space and Y is a ring of closed sets, then a necessary and sufficient condition for the Wallman space W(X,F) to be a compactification of X is that X be T1 andYF separating. A necessary and sufficient condition for a Wallman compactification to be Hausdoff is that F be a normal base. As a result, not all T, compactifications can be of Wallman type. One point and finite Hausdorff compactifications are of Wallman type.
Equivalent Sets and Cardinal Numbers
The purpose of this thesis is to study the equivalence relation between sets A and B: A o B if and only if there exists a one to one function f from A onto B. In Chapter I, some of the fundamental properties of the equivalence relation are derived. Certain basic results on countable and uncountable sets are given. In Chapter II, a number of theorems on equivalent sets are proved and Dedekind's definitions of finite and infinite are compared with the ordinary concepts of finite and infinite. The Bernstein Theorem is studied and three different proofs of it are given. In Chapter III, the concept of cardinal number is introduced by means of two axioms of A. Tarski, and some fundamental theorems on cardinal arithmetic are proved.
Linear Operators
This paper is a study of linear operators defined on normed linear spaces. A basic knowledge of set theory and vector spaces is assumed, and all spaces considered have real vector spaces. The first chapter is a general introduction that contains assumed definitions and theorems. Included in this chapter is material concerning linear functionals, continuity, and boundedness. The second chapter contains the proofs of three fundamental theorems of linear analysis: the Open Mapping Theorem, the Hahn-Banach Theorem, and the Uniform Boundedness Principle. The third chapter is concerned with applying some of the results established in earlier chapters. In particular, the concepts of compact operators and Schauder bases are introduced, and a proof that an operator is compact if and only if its adjoint is compact is included. This chapter concludes with a proof of an important application of the Open Mapping Theorem, namely, the Closed Graph Theorem.
The Use of Chebyshev Polynomials in Numerical Analysis
The purpose of this paper is to investigate the nature and practical uses of Chebyshev polynomials. Chapter I gives recognition to mathematicians responsible for studies in this area. Chapter II enumerates several mathematical situations in which the polynomials naturally arise and suggests reasons for the pursuance of their study. Chapter III includes: Chebyshev polynomials as related to "best" polynomial approximation, Chebyshev series, and methods of producing polynomial approximations to continuous functions. Chapter IV discusses the use of Chebyshev polynomials to solve certain differential equations and Chebyshev-Gauss quadrature.
Tauberian Theorems for Certain Regular Processes
In 1943 R. C. Buck showed that a sequence x is convergent if some regular matrix sums every subsequence of x. Thus, for example, if every subsequence of x is Cesaro summable, then x is actually convergent. Buck's result was quite surprising, since research in summability theory up to that time gave no hint of such a remarkable theorem. The appearance of Buck's result in the Bulletin of the American Mathematical Society (3) created immediate interest and has prompted considerable research which has taken the following directions: (i) to study regular matrix transformations in order to shed light on Buck's theorem, (ii) to extend Buck's theorem, (iii) to obtain analogs of Buck's theorem for sequence spaces other than the space of convergent sequences, and (iv) to obtain analogs of Buck's theorem involving processes other than subsequencing, such as stretching. The purpose of the present paper is to contribute to all facets of the problem, particularly to (i), (iii), and (iv).
Valuations and Valuation Rings
This paper is an investigation of several basic properties of ordered Abelian groups, valuations, the relationship between valuation rings, valuations, and their value groups and valuation rings. The proofs to all theorems stated without proof can be found in Zariski and Samuel, Commutative Algebra, Vol. I, 1858. In Chapter I several basic theorems which are used in later proofs are stated without proof, and we prove several theorems on the structure of ordered Abelian groups, and the basic relationships between these groups, valuations, and their valuation rings in a field. In Chapter II we deal with valuation rings, and relate the structure of valuation rings to the structure of their value groups.
Absolute Continuity and the Integration of Bounded Set Functions
The first chapter gives basic definitions and theorems concerning set functions and set function integrals. The lemmas and theorems are presented without proof in this chapter. The second chapter deals with absolute continuity and Lipschitz condition. Particular emphasis is placed on the properties of max and min integrals. The third chapter deals with approximating absolutely continuous functions with bounded functions. It also deals with the existence of the integrals composed of various combinations of bounded functions and finitely additive functions. The concluding theorem states if the integral of the product of a bounded function and a non-negative finitely additive function exists, then the integral of the product of the bounded function with an absolutely continuous function exists over any element in a field of subsets of a set U.
Properties of Some Classical Integral Domains
Greatest common divisor domains, Bezout domains, valuation rings, and Prüfer domains are studied. Chapter One gives a brief introduction, statements of definitions, and statements of theorems without proof. In Chapter Two theorems about greatest common divisor domains and characterizations of Bezout domains, valuation rings, and Prüfer domains are proved. Also included are characterizations of a flat overring. Some of the results are that an integral domain is a Prüfer domain if and only if every overring is flat and that every overring of a Prüfer domain is a Prüfer domain.
Chebyshev Subsets in Smooth Normed Linear Spaces
This paper is a study of the relation between smoothness of the norm on a normed linear space and the property that every Chebyshev subset is convex. Every normed linear space of finite dimension, having a smooth norm, has the property that every Chebyshev subset is convex. In the second chapter two properties of the norm, uniform Gateaux differentiability and uniform Frechet differentiability where the latter implies the former, are given and are shown to be equivalent to smoothness of the norm in spaces of finite dimension. In the third chapter it is shown that every reflexive normed linear space having a uniformly Gateaux differentiable norm has the property that every weakly closed Chebyshev subset, with non-empty weak interior that is norm-wise dense in the subset, is convex.
Inverse Limit Spaces
Inverse systems, inverse limit spaces, and bonding maps are defined. An investigation of the properties that an inverse limit space inherits, depending on the conditions placed on the factor spaces and bonding maps is made. Conditions necessary to ensure that the inverse limit space is compact, connected, locally connected, and semi-locally connected are examined. A mapping from one inverse system to another is defined and the nature of the function between the respective inverse limits, induced by this mapping, is investigated. Certain restrictions guarantee that the induced function is continuous, onto, monotone, periodic, or open. It is also shown that any compact metric space is the continuous image of the cantor set. Finally, any compact Hausdorff space is characterized as the inverse limit of an inverse system of polyhedra.
Proofs of Some Limit Theorems in Probability
This study gives detailed proofs of some limit theorems in probability which are important in theoretical and applied probability, The general introduction contains definitions and theorems that are basic tools of the later development. Included in this first chapter is material concerning normal distributions and characteristic functions, The second chapter introduces lower and upper bounds of the ratio of the binomial distribution to the normal distribution., Then these bound are used to prove the local Deioivre-Laplace limit theorem. The third chapter includes proofs of the central limit theorems for identically distributed and non-identically distributed random variables,
Generalized C-sets
The problem undertaken in this paper is to determine what the algebraic structure of the class of C-sets is, when the notion of sum is to be the "set sum. " While the preliminary work done by Appling took place in the space of additive and bounded real valued functions, the results here are found in the more general setting of a complete lattice ordered group. As a conseque n c e , G . Birkhof f' s book, Lattice Theory, is used as the standard reference for most of the terminology used in the paper. The direction taken is prompted by a paper by W. D. L. Appling, "A Generalization of Absolute Continuity and of an Analogue of the Lebesgue Decomposition Theorem. " Since some of the results obtained provide another approach to a problem originally studied by Nakano, and improved upon by Bernau, reference is made to their work to provide other terminology and examples of alternative approaches to the problem of lateral completion. Thus Chapter I contains a brief history of the notion of C-sets and their relationship to lattice ordered groups, along with a summary of the properties of lattice ordered groups needed for later developments. In addition, several results in the general theory of lattice ordered groups are cited to provide insight into the comparability of the assumptions that will ultimately be made about the groups. Chapter II begins with the axiomatization of the collection of nearest point functions" for the closed A-ideals of the cone of a complete lattice ordered group. The basic results in the chapter establish that the functions defined do indeed characterize the complete A-ideals, and that the maps have a 'nearest point property." The maps are then extended to the entire group and shown to correspond to the "nearest point …
Spaces of Closed Subsets of a Topological Space
The purpose of this paper is to examine selected topologies, the Vietoris topology in particular, on S(X), the collection of nonempty, closed subsets of a topological space X. Characteristics of open and closed subsets of S(X), with the Vietoris topology, are noted. The relationships between the space X and the space S(X), with the Vietoris topology, concerning the properties of countability, compactness, and connectedness and the separation properties are investigated. Additional topologies are defined on S(X), and each is compared to the Vietoris topology on S(X). Finally, topological convergence of nets of subsets of X is considered. It is found that topological convergence induces a topology on S(X), and that this topology is the Vietoris topology on S(X) when X is a compact, Hausdorff space.
Topics in Category Theory
The purpose of this paper is to examine some basic topics in category theory. A category consists of a class of mathematical objects along with a morphism class having an associative composition. The paper is divided into two chapters. Chapter I deals with intrinsic properties of categories. Various "sub-objects" and properties of morphisms are defined and examples are given. Chapter II deals with morphisms between categories called functors and the natural transformations between functors. Special types of functors are defined and examples are given.
Wiener's Approximation Theorem for Locally Compact Abelian Groups
This study of classical and modern harmonic analysis extends the classical Wiener's approximation theorem to locally compact abelian groups. The first chapter deals with harmonic analysis on the n-dimensional Euclidean space. Included in this chapter are some properties of functions in L1(Rn) and T1(Rn), the Wiener-Levy theorem, and Wiener's approximation theorem. The second chapter introduces the notion of standard function algebra, cospectrum, and Wiener algebra. An abstract form of Wiener's approximation theorem and its generalization is obtained. The third chapter introduces the dual group of a locally compact abelian group, defines the Fourier transform of functions in L1(G), and establishes several properties of functions in L1(G) and T1(G). Wiener's approximation theorem and its generalization for L1(G) is established.
Euclidean Rings
The cardinality of the set of units, and of the set of equivalence classes of primes in non-trivial Euclidean domains is discussed with reference to the categories "finite" and "infinite." It is shown that no Euclidean domains exist for which both of these sets are finite. The other three combinations are possible and examples are given. For the more general Euclidean rings, the first combination is possible and examples are likewise given. Prime factorization is also discussed in both Euclidean rings and Euclidean domains. For Euclidean rings, an alternative definition of prime elements in terms of associates is compared and contrasted to the usual definitions.
A Partial Characterization of Upper Semi-Continuous Decompositions
The goal of this paper is to characterize, at least partially, upper semi-continuous decompositions of topological spaces and the role that upper semi-continuity plays in preserving certain topological properties under decomposition mappings. Attention is also given to establishing what role upper semi-continuity plays in determining conditions under which decomposition spaces possess certain properties. A number of results for non-upper semi-continuous decompositions are included to help clarify the scope of the part upper semi-continuity plays in determining relationships between topological spaces and their decomposition spaces.
Topologies on Complete Lattices
One of the more important concepts in mathematics is the concept of order, that is, the description or comparison of two elements of a set in terms of one preceding or being smaller than or equal to the other. If the elements of a set, as pairs, exhibit certain order-type characteristics, the set is said to be a partially ordered set. The purpose of this paper is to investigate a special class of partially ordered sets, called lattices, and to investigate topologies induced on these lattices by specially defined order related properties called order-convergence and star-convergence.
Back to Top of Screen