UNT Theses and Dissertations - 11 Matching Results

Search Results

Ability Estimation Under Different Item Parameterization and Scoring Models

Description: A Monte Carlo simulation study investigated the effect of scoring format, item parameterization, threshold configuration, and prior ability distribution on the accuracy of ability estimation given various IRT models. Item response data on 30 items from 1,000 examinees was simulated using known item parameters and ability estimates. The item response data sets were submitted to seven dichotomous or polytomous IRT models with different item parameterization to estimate examinee ability. The accuracy of the ability estimation for a given IRT model was assessed by the recovery rate and the root mean square errors. The results indicated that polytomous models produced more accurate ability estimates than the dichotomous models, under all combinations of research conditions, as indicated by higher recovery rates and lower root mean square errors. For the item parameterization models, the one-parameter model out-performed the two-parameter and three-parameter models under all research conditions. Among the polytomous models, the partial credit model had more accurate ability estimation than the other three polytomous models. The nominal categories model performed better than the general partial credit model and the multiple-choice model with the multiple-choice model the least accurate. The results further indicated that certain prior ability distributions had an effect on the accuracy of ability estimation; however, no clear order of accuracy among the four prior distribution groups was identified due to an interaction between prior ability distribution and threshold configuration. The recovery rate was lower when the test items had categories with unequal threshold distances, were close at one end of the ability/difficulty continuum, and were administered to a sample of examinees whose population ability distribution was skewed to the same end of the ability continuum.
Date: May 2002
Creator: Si, Ching-Fung B.
Partner: UNT Libraries

Bias and Precision of the Squared Canonical Correlation Coefficient under Nonnormal Data Conditions

Description: This dissertation: (a) investigated the degree to which the squared canonical correlation coefficient is biased in multivariate nonnormal distributions and (b) identified formulae that adjust the squared canonical correlation coefficient (Rc2) such that it most closely approximates the true population effect under normal and nonnormal data conditions. Five conditions were manipulated in a fully-crossed design to determine the degree of bias associated with Rc2: distribution shape, variable sets, sample size to variable ratios, and within- and between-set correlations. Very few of the condition combinations produced acceptable amounts of bias in Rc2, but those that did were all found with first function results. The sample size to variable ratio (n:v)was determined to have the greatest impact on the bias associated with the Rc2 for the first, second, and third functions. The variable set condition also affected the accuracy of Rc2, but for the second and third functions only. The kurtosis levels of the marginal distributions (b2), and the between- and within-set correlations demonstrated little or no impact on the bias associated with Rc2. Therefore, it is recommended that researchers use n:v ratios of at least 10:1 in canonical analyses, although greater n:v ratios have the potential to produce even less bias. Furthermore,because it was determined that b2 did not impact the accuracy of Rc2, one can be somewhat confident that, with marginal distributions possessing homogenous kurtosis levels ranging anywhere from -1 to 8, Rc2 will likely be as accurate as that resulting from a normal distribution. Because the majority of Rc2 estimates were extremely biased, it is recommended that all Rc2 effects, regardless of which function from which they result, be adjusted using an appropriate adjustment formula. If no rationale exists for the use of another formula, the Rozeboom-2 would likely be a safe choice given that it produced the greatest ...
Date: August 2006
Creator: Leach, Lesley Ann Freeny
Partner: UNT Libraries

A Comparison of Three Criteria Employed in the Selection of Regression Models Using Simulated and Real Data

Description: Researchers who make predictions from educational data are interested in choosing the best regression model possible. Many criteria have been devised for choosing a full or restricted model, and also for selecting the best subset from an all-possible-subsets regression. The relative practical usefulness of three of the criteria used in selecting a regression model was compared in this study: (a) Mallows' C_p, (b) Amemiya's prediction criterion, and (c) Hagerty and Srinivasan's method involving predictive power. Target correlation matrices with 10,000 cases were simulated so that the matrices had varying degrees of effect sizes. The amount of power for each matrix was calculated after one or two predictors was dropped from the full regression model, for sample sizes ranging from n = 25 to n = 150. Also, the null case, when one predictor was uncorrelated with the other predictors, was considered. In addition, comparisons for regression models selected using C_p and prediction criterion were performed using data from the National Educational Longitudinal Study of 1988.
Date: December 1994
Creator: Graham, D. Scott
Partner: UNT Libraries

A comparison of traditional and IRT factor analysis.

Description: This study investigated the item parameter recovery of two methods of factor analysis. The methods researched were a traditional factor analysis of tetrachoric correlation coefficients and an IRT approach to factor analysis which utilizes marginal maximum likelihood estimation using an EM algorithm (MMLE-EM). Dichotomous item response data was generated under the 2-parameter normal ogive model (2PNOM) using PARDSIM software. Examinee abilities were sampled from both the standard normal and uniform distributions. True item discrimination, a, was normal with a mean of .75 and a standard deviation of .10. True b, item difficulty, was specified as uniform [-2, 2]. The two distributions of abilities were completely crossed with three test lengths (n= 30, 60, and 100) and three sample sizes (N = 50, 500, and 1000). Each of the 18 conditions was replicated 5 times, resulting in 90 datasets. PRELIS software was used to conduct a traditional factor analysis on the tetrachoric correlations. The IRT approach to factor analysis was conducted using BILOG 3 software. Parameter recovery was evaluated in terms of root mean square error, average signed bias, and Pearson correlations between estimated and true item parameters. ANOVAs were conducted to identify systematic differences in error indices. Based on many of the indices, it appears the IRT approach to factor analysis recovers item parameters better than the traditional approach studied. Future research should compare other methods of factor analysis to MMLE-EM under various non-normal distributions of abilities.
Date: December 2004
Creator: Kay, Cheryl Ann
Partner: UNT Libraries

A Comparison of Two Differential Item Functioning Detection Methods: Logistic Regression and an Analysis of Variance Approach Using Rasch Estimation

Description: Differential item functioning (DIF) detection rates were examined for the logistic regression and analysis of variance (ANOVA) DIF detection methods. The methods were applied to simulated data sets of varying test length (20, 40, and 60 items) and sample size (200, 400, and 600 examinees) for both equal and unequal underlying ability between groups as well as for both fixed and varying item discrimination parameters. Each test contained 5% uniform DIF items, 5% non-uniform DIF items, and 5% combination DIF (simultaneous uniform and non-uniform DIF) items. The factors were completely crossed, and each experiment was replicated 100 times. For both methods and all DIF types, a test length of 20 was sufficient for satisfactory DIF detection. The detection rate increased significantly with sample size for each method. With the ANOVA DIF method and uniform DIF, there was a difference in detection rates between discrimination parameter types, which favored varying discrimination and decreased with increased sample size. The detection rate of non-uniform DIF using the ANOVA DIF method was higher with fixed discrimination parameters than with varying discrimination parameters when relative underlying ability was unequal. In the combination DIF case, there was a three-way interaction among the experimental factors discrimination type, relative ability, and sample size for both detection methods. The error rate for the ANOVA DIF detection method decreased as test length increased and increased as sample size increased. For both methods, the error rate was slightly higher with varying discrimination parameters than with fixed. For logistic regression, the error rate increased with sample size when relative underlying ability was unequal between groups. The logistic regression method detected uniform and non-uniform DIF at a higher rate than the ANOVA DIF method. Because the type of DIF present in real data is rarely known, the logistic regression method is recommended for ...
Date: August 1995
Creator: Whitmore, Marjorie Lee Threet
Partner: UNT Libraries

The Effect of Psychometric Parallelism among Predictors on the Efficiency of Equal Weights and Least Squares Weights in Multiple Regression

Description: There are several conditions for applying equal weights as an alternative to least squares weights. Psychometric parallelism, one of the conditions, has been suggested as a necessary and sufficient condition for equal-weights aggregation. The purpose of this study is to investigate the effect of psychometric parallelism among predictors on the efficiency of equal weights and least squares weights. Target correlation matrices with 10,000 cases were simulated so that the matrices had varying degrees of psychometric parallelism. Five hundred samples with six ratios of observation to predictor = 5/1, 10/1, 20/1, 30/1, 40/1, and 50/1 were drawn from each population. The efficiency is interpreted as the accuracy and the predictive power estimated by the weighting methods. The accuracy is defined by the deviation between the population R² and the sample R² . The predictive power is referred to as the population cross-validated R² and the population mean square error of prediction. The findings indicate there is no statistically significant relationship between the level of psychometric parallelism and the accuracy of least squares weights. In contrast, the correlation between the level of psychometric parallelism and the accuracy of equal weights is significantly negative. Under different conditions, the minimum p value of χ² for testing psychometric parallelism among predictors is also different in order to prove equal weights more powerful than least squares weights. The higher the number of predictors is, the higher the minimum p value. The higher the ratio of observation to predictor is, the higher the minimum p value. The higher the magnitude of intercorrelations among predictors is, the lower the minimum p value. This study demonstrates that the most frequently used levels of significance, 0.05 and 0.01, are no longer the only p values for testing the null hypotheses of psychometric parallelism among predictors when replacing least squares weights ...
Date: May 1996
Creator: Zhang, Desheng
Partner: UNT Libraries

An Empirical Comparison of Random Number Generators: Period, Structure, Correlation, Density, and Efficiency

Description: Random number generators (RNGs) are widely used in conducting Monte Carlo simulation studies, which are important in the field of statistics for comparing power, mean differences, or distribution shapes between statistical approaches. Statistical results, however, may differ when different random number generators are used. Often older methods have been blindly used with no understanding of their limitations. Many random functions supplied with computers today have been found to be comparatively unsatisfactory. In this study, five multiplicative linear congruential generators (MLCGs) were chosen which are provided in the following statistical packages: RANDU (IBM), RNUN (IMSL), RANUNI (SAS), UNIFORM(SPSS), and RANDOM (BMDP). Using a personal computer (PC), an empirical investigation was performed using five criteria: period length before repeating random numbers, distribution shape, correlation between adjacent numbers, density of distributions and normal approach of random number generator (RNG) in a normal function. All RNG FORTRAN programs were rewritten into Pascal which is more efficient language for the PC. Sets of random numbers were generated using different starting values. A good RNG should have the following properties: a long enough period; a well-structured pattern in distribution; independence between random number sequences; random and uniform distribution; and a good normal approach in the normal distribution. Findings in this study suggested that the above five criteria need to be examined when conducting a simulation study with large enough sample sizes and various starting values because the RNG selected can affect the statistical results. Furthermore, a study for purposes of indicating reproducibility and validity should indicate the source of the RNG, the type of RNG used, evaluation results of the RNG, and any pertinent information related to the computer used in the study. Recommendations for future research are suggested in the area of other RNGs and methods not used in this study, such as additive, combined, ...
Date: August 1995
Creator: Bang, Jung Woong
Partner: UNT Libraries

Establishing the utility of a classroom effectiveness index as a teacher accountability system.

Description: How to identify effective teachers who improve student achievement despite diverse student populations and school contexts is an ongoing discussion in public education. The need to show communities and parents how well teachers and schools improve student learning has led districts and states to seek a fair, equitable and valid measure of student growth using student achievement. This study investigated a two stage hierarchical model for estimating teacher effect on student achievement. This measure was entitled a Classroom Effectiveness Index (CEI). Consistency of this model over time, outlier influences in individual CEIs, variance among CEIs across four years, and correlations of second stage student residuals with first stage student residuals were analyzed. The statistical analysis used four years of student residual data from a state-mandated mathematics assessment (n=7086) and a state-mandated reading assessment (n=7572) aggregated by teacher. The study identified the following results. Four years of district grand slopes and grand intercepts were analyzed to show consistent results over time. Repeated measures analyses of grand slopes and intercepts in mathematics were statistically significant at the .01 level. Repeated measures analyses of grand slopes and intercepts in reading were not statistically significant. The analyses indicated consistent results over time for reading but not for mathematics. Data were analyzed to assess outlier effects. Nineteen statistically significant outliers in 15,378 student residuals were identified. However, the impact on individual teachers was extreme in eight of the 19 cases. Further study is indicated. Subsets of teachers in the same assignment at the same school for four consecutive years and for three consecutive years indicated CEIs were stable over time. There were no statistically significant differences in either mathematics or reading. Correlations between Level One student residuals and HLM residuals were statistically significant in reading and in mathematics. This implied that the second stage of ...
Date: May 2002
Creator: Bembry, Karen L.
Partner: UNT Libraries

The Generalization of the Logistic Discriminant Function Analysis and Mantel Score Test Procedures to Detection of Differential Testlet Functioning

Description: Two procedures for detection of differential item functioning (DIF) for polytomous items were generalized to detection of differential testlet functioning (DTLF). The methods compared were the logistic discriminant function analysis procedure for uniform and non-uniform DTLF (LDFA-U and LDFA-N), and the Mantel score test procedure. Further analysis included comparison of results of DTLF analysis using the Mantel procedure with DIF analysis of individual testlet items using the Mantel-Haenszel (MH) procedure. Over 600 chi-squares were analyzed and compared for rejection of null hypotheses. Samples of 500, 1,000, and 2,000 were drawn by gender subgroups from the NELS:88 data set, which contains demographic and test data from over 25,000 eighth graders. Three types of testlets (totalling 29) from the NELS:88 test were analyzed for DTLF. The first type, the common passage testlet, followed the conventional testlet definition: items grouped together by a common reading passage, figure, or graph. The other two types were based upon common content and common process. as outlined in the NELS test specification.
Date: August 1994
Creator: Kinard, Mary E.
Partner: UNT Libraries

Measurement Disturbance Effects on Rasch Fit Statistics and the Logit Residual Index

Description: The effects of random guessing as a measurement disturbance on Rasch fit statistics (unweighted total, weighted total, and unweighted ability between) and the Logit Residual Index (LRI) were examined through simulated data sets of varying sample sizes, test lengths, and distribution types. Three test lengths (25, 50, and 100), three sample sizes (25, 50, and 100), two item difficulty distributions (normal and uniform), and three levels of guessing (no guessing (0%), 25%, and 50%) were used in the simulations, resulting in 54 experimental conditions. The mean logit person ability for each experiment was +1. Each experimental condition was simulated once in an effort to approximate what could happen on the single administration of a four option per item multiple choice test to a group of relatively high ability persons. Previous research has shown that varying item and person parameters have no effect on Rasch fit statistics. Consequently, these parameters were used in the present study to establish realistic test conditions, but were not interpreted as effect factors in determining the results of this study.
Date: August 1997
Creator: Mount, Robert E. (Robert Earl)
Partner: UNT Libraries

The Supply and Demand of Physician Assistants in the United States: A Trend Analysis

Description: The supply of non-physician clinicians (NPCs), such as physician assistant (PAs), could significantly influence demand requirements in medical workforce projections. This study predicts supply of and demand for PAs from 2006 to 2020. The PA supply model utilized the number of certified PAs, the educational capacity (at 10% and 25% expansion) with assumed attrition rates, and retirement assumptions. Gross domestic product (GDP) chained in 2000 dollar and US population were utilized in a transfer function trend analyses with the number of PAs as the dependent variable for the PA demand model. Historical analyses revealed strong correlations between GDP and US population with the number of PAs. The number of currently certified PAs represents approximately 75% of the projected demand. At 10% growth, the supply and demand equilibrium for PAs will be reached in 2012. A 25% increase in new entrants causes equilibrium to be met one year earlier. Robust application trends in PA education enrollment (2.2 applicants per seat for PAs is the same as for allopathic medical school applicants) support predicted increases. However, other implications for the PA educational institutions include recruitment and retention of qualified faculty, clinical site maintenance and diversity of matriculates. Further research on factors affecting the supply and demand for PAs is needed in the areas of retirement age rates, gender, and lifestyle influences. Specialization trends and visit intensity levels are potential variables.
Date: May 2007
Creator: Orcutt, Venetia L.
Partner: UNT Libraries