UNT Theses and Dissertations - Browse

ABOUT BROWSE FEED

Accurate and Reliable Prediction of Energetic and Spectroscopic Properties Via Electronic Structure Methods

Description: Computational chemistry has led to the greater understanding of the molecular world, from the interaction of molecules, to the composition of molecular species and materials. Of the families of computational chemistry approaches available, the main families of electronic structure methods that are capable of accurate and/or reliable predictions of energetic, structural, and spectroscopic properties are ab initio methods and density functional theory (DFT). The focus of this dissertation is to improve the accuracy of predictions and computational efficiency (with respect to memory, disk space, and computer processing time) of some computational chemistry methods, which, in turn, can extend the size of molecule that can be addressed, and, for other methods, DFT, in particular, gain greater insight into which DFT methods are more reliable than others. Much, though not all, of the focus of this dissertation is upon transition metal species – species for which much less method development has been targeted or insight about method performance has been well established. The ab initio approach that has been targeted in this work is the correlation consistent composite approach (ccCA), which has proven to be a robust, ab initio computational method for main group and first row transition metal-containing molecules yielding, on average, accurate thermodynamic properties, i.e., within 1 kcal/mol of experiment for main group species and within 3 kcal/mol of experiment for first row transition metal molecules. In order to make ccCA applicable to systems containing any element from the periodic table, development of the method for second row transition metals and heavier elements, including lower p-block (5p and 6p) elements was pursued. The resulting method, the relativistic pseudopotential variant of ccCA (rp-ccCA), and its application are detailed for second row transition metals and lower p-block elements. Because of the computational cost of ab initio methods, DFT is a popular choice ...
Date: August 2013
Creator: Laury, Marie L.
Partner: UNT Libraries

From Development of Semi-empirical Atomistic Potentials to Applications of Correlation Consistent Basis Sets

Description: The development of the semi-empirical atomistic potential called the embedded atom method (EAM) has allowed for the efficient modeling of solid-state environments, at a lower computational cost than afforded by density functional theory (DFT). This offers the capability of EAM to model the energetics of solid-state phases of varying coordination, including defects, such as vacancies and self-interstitials. This dissertation highlights the development and application of two EAMs: a Ti potential constructed with the multi-state modified embedded atom method (MS-MEAM), and a Ni potential constructed with the fragment Hamiltonian (FH) method. Both potentials exhibit flexibility in the description of different solid-states phases and applications. This dissertation also outlines two applications of DFT. First, a study of structure and stability for solid-state forms of NixCy (in which x and y are integers) is investigated using plane-wave DFT. A ground state phase for Ni2C is elucidated and compared to known and hypothesized forms of NixCy. Also, a set of correlation consistent basis sets, previously constructed using the B3LYP and BLYP density functionals, are studied. They are compared to the well-known to the correlation consistent basis sets that were constructed with higher-level ab initio methodologies through computations of enthalpies of formation and combustion enthalpies. The computational accuracy with regard to experiment is reported.
Date: May 2014
Creator: Gibson, Joshua S.
Partner: UNT Libraries

Kinetics of Sulfur: Experimental Study of the Reaction of Atomic Sulfur with Acetylene and Theoretical Study of the Cn + So Potential Energy Surface

Description: The kinetics of the reaction of atomic sulfur with acetylene (S (3P) + C2H2) were investigated experimentally via the flash photolysis resonance fluorescence method, and the theoretical potential energy surface for the reaction CN + SO was modeled via the density functional and configuration interaction computational methods. Sulfur is of interest in modern chemistry due to its relevance in combustion and atmospheric chemistry, in the Claus process, in soot and diamond-film formation and in astrochemistry. Experimental conditions ranged from 295 – 1015 K and 10 – 400 Torr of argon. Pressure-dependence was shown at all experimental temperatures. The room temperature high-pressure limit second order rate constant was (2.10 ± 0.08) × 10-13 cm3 molecule-1 s-1. The Arrhenius plot of the high-pressure limit rate constants gave an Ea of (11.34 ± 0.03) kJ mol-1 and a pre-exponential factor of (2.14 ± 0.19) × 10-11 cm3 molecule-1 s-1. S (3P) + C2H2 is likely an adduct forming reaction due to pressure-dependence (also supported by a statistical mechanics analysis) which involves intersystem crossing. The potential energy surface for CN + SO was calculated at the B3LYP/6-311G(d) level and refined at the QCISD/6-311G(d) level. The PES was compared to that of the analogous reaction CN + O2. Notable energetically favorable products are NCS + O, CO + NS, and CS + NO. The completed PES will ultimately be modeled at the CCSD(T) level (extrapolated to infinite basis set limit) for theoretical reaction rate analysis (RRKM).
Date: May 2013
Creator: Ayling, Sean A.
Partner: UNT Libraries

Knowledge Discovery of Nanotube Mechanical Properties With an Informatics-Molecular Dynamics Approach

Description: Carbon nanotubes (CNT) have unparalleled mechanical properties, spanning several orders of magnitude over both length and time scales. Computational and experimental results vary greatly, partly due to the multitude of variables. Coupling physics-based molecular dynamics (MD) with informatics methodologies is proposed to navigate the large problem space. The adaptive intermolecular reactive empirical bond order (AIREBO) is used to model short range, long range and torsional interactions. A powerful approach that has not been used to study CNT mechanical properties is the derivation of descriptors and quantitative structure property relationships (QSPRs). For the study of defected single-walled CNTs (SWCNT), two descriptors were identified as critical: the density of non-sp2 hybridized carbons and the density of methyl groups functionalizing the surface. It is believed that both of these descriptors can be experimentally measured, paving the way for closed-loop computational-experimental development. Informatics can facilitate discovery of hidden knowledge. Further evaluation of the critical descriptors selected for Poisson’s ratio lead to the discovery that Poisson’s ratio has strain-varying nonlinear elastic behavior. CNT effectiveness in composites is based both on intrinsic mechanical properties and interfacial load transfer. In double-walled CNTs, inter-wall bonds are surface defects that decrease the intrinsic properties but also improve load transfer. QSPRs can be used to model these inverse effects and pinpoint the optimal amount of inter-wall bonds.
Date: May 2012
Creator: Borders, Tammie L.
Partner: UNT Libraries

Thermochemistry Investigations Via the Correlation Consistent Composite Approach

Description: Since the development of the correlation consistent composite approach (ccCA) in 2006, ccCA has been shown to be applicable across the periodic table, producing, on average, energetic properties (e.g., ionization potentials, electron affinities, enthalpies of formation, bond dissociation energies) within 1 kcal/mol for main group compounds. This dissertation utilizes ccCA in the investigation of several chemical systems including nitrogen-containing compounds, sulfur-containing compounds, and carbon dioxide complexes. The prediction and calculation of energetic properties (e.g., enthalpies of formation and interaction energies) of the chemical systems investigated within this dissertation has led to suggestions of novel insensitive highly energetic nitrogen-containing compounds, defined reaction mechanisms for sulfur compounds allowing for increased accuracy compared to experimental enthalpies of formation, and a quantitative structure activity relationship for altering the affinity of CO2 with substituted amine compounds. Additionally, a study is presented on the convergence of correlation energy and optimal domain criteria for local Møller–Plesset theory (LMP2).
Date: December 2012
Creator: Jorgensen, Kameron R.
Partner: UNT Libraries

Transition Metal Mediated C-o Bond Cleavage: From Co2 Activation to Lignin Degradation

Description: CO2 activation and conversion mediated by transition metal (TM) catalysts were investigated. Homogeneous catalysis of the reverse water gas shift reaction CO2+H2→H2O+CO was studied as a means to reduce CO2. β-diketiminato metal models L'MI ( L' =C3N2H5-; M = first-row TMs) were considered as potential catalysts. The thermodynamics of prototypical reaction pathways were simulated using B3LYP/aug-cc-pVTZ. Results show that middle series metal complexes result in more thermodynamically favorable properties; therefore, more detailed thermodynamic and kinetic studies were carried out for Mn, Fe, and Co complexes. On the other hand, heterogeneous catalysis of the reduction of CO2 to CO was carried out on Fe, Co, Ni, and Cu surfaces, using the PBE functional. Reaction barriers were calculated using the climbing image nudged elastic band method. Late 3d and 4d transition metal ion (Fe, Co, Ni, Cu, Ru, Rh, Pd, and Ag) mediated activation of dimethyl ether was studied to investigate the intrinsic catalytic properties of metals for C-O bond cleavage. A set of density functional theory (DFT) methods (BLYP, B3LYP, M06, M06-L, B97-1, B97-D, TPSS, and PBE) with aug-cc-pVTZ basis sets was calibrated with CCSD(T)/CBS calculations on reaction energies and barriers.
Date: August 2013
Creator: Liu, Cong
Partner: UNT Libraries