UNT Theses and Dissertations - 39 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Barrier and Long Term Creep Properties of Polymer Nanocomposites.

Description: The barrier properties and long term strength retention of polymers are of significant importance in a number of applications. Enhanced lifetime food packaging, substrates for OLED based flexible displays and long duration scientific balloons are among them. Higher material requirements in these applications drive the need for an accurate measurement system. Therefore, a new system was engineered with enhanced sensitivity and accuracy. Permeability of polymers is affected by permeant solubility and diffusion. One effort to decrease diffusion rates is via increasing the transport path length. We explore this through dispersion of layered silicates into polymers. Layered silicates with effective aspect ratio of 1000:1 have shown promise in improving the barrier and mechanical properties of polymers. The surface of these inorganic silicates was modified with surfactants to improve the interaction with organic polymers. The micro and nanoscale dispersion of the layered silicates was probed using optical and transmission microscopy as well as x-ray diffraction. Thermal transitions were analyzed using differential scanning calorimetry. Mechanical and permeability measurements were correlated to the dispersion and increased density. The essential structure-property relationships were established by comparing semicrystalline and amorphous polymers. Semicrystalline polymers selected were nylon-6 and polyethylene terephthalate. The amorphous polymer was polyethylene terphthalate-glycol. Densification due to the layered silicate in both semicrystalline and amorphous polymers was associated with significant impact on barrier and long term creep behavior. The inferences were confirmed by investigating a semi-crystalline polymer - polyethylene - above and below the glass transition. The results show that the layered silicate influences the amorphous segments in polymers and barrier properties are affected by synergistic influences of densification and uniform dispersion of the layered silicates.
Date: December 2004
Creator: Ranade, Ajit
Partner: UNT Libraries

Catalytic Properties and Mechanical Behavior of Metallic Glass Powders

Description: Lack of crystalline order and microstructural features such as grain/grain-boundary in metallic glasses results in a suite of remarkable attributes including very high strength, close to theoretical elasticity, high corrosion and wear resistance, and soft magnetic properties. By altering the morphology and tuning of composition, MGs may be transformed into high-performance catalytic materials. In this study, the catalytic properties of metallic glass powders were demonstrated in dissociating toxic organic chemicals such as AZO dye. BMG powders showed superior performance compared to state of the art crystalline iron because of their high catalytic activity, durability, and reusability. To enhance the catalytic properties, high energy mechanical milling was performed to increase the surface area and defect density. Iron-based bulk metallic glass (BMG) of composition Fe48Cr15Mo14Y2C15B6 was used because of its low cost and ability to make large surface area by high energy ball milling. AZO dye was degraded in less than 20 minutes for the 9 hours milled Fe-BMG. However, subsequent increase in ball milling time resulted in devitrification and loss of catalytic activity as measured using UV-Visible spectroscopy. Aluminum-based bulk metallic glass (Al-BMG) powder of composition Al82Fe3Ni8Y7 was synthesized by arc-melting the constituent elements followed by gas-atomization. The particle size and morphology were similar to Fe-BMG with a fully amorphous structure. A small percentage of transition metal constituents (Fe and Ni) in a mostly aluminum alloy showed high catalytic activity, with no toxic by-products and no change in surface characteristics. Al-alloy particles, being light-weight, were easily dispersed in aqueous medium and accelerated the redox reactions. The mechanism of dye dissociation was studied using Raman and Infrared (IR) spectroscopy. Breaking of -C-H- and - C-N- bonds of AZO dye was found to be the primary mechanism. Mechanical behavior of individual BMG particles was evaluated by in situ pico-indentation in a scanning electron ...
Date: May 2017
Creator: Garrison, Seth Thomas
Partner: UNT Libraries

Compostable Soy-Based Polyurethane Foam with Kenaf Core Modifiers

Description: Building waste and disposable packaging are a major component in today's landfills. Most of these are structural or thermally insulative polymer foams that do not degrade over a long period of time. Currently, there is a push to replace these foams with thermoplastic or biodegradable foams that can either be recycled or composted. We propose the use of compostable soy-based polyurethane foams (PU) with kenaf core modifiers that will offer the desired properties with the ability to choose responsible end-of-life decisions. The effect of fillers is a critical parameter in investigating the thermal and mechanical properties along with its effect on biodegradability. In this work, foams with 5%, 10%, and 15% kenaf core content were created. Two manufacturing approaches were used: the free foaming used by spray techniques and the constrained expansion complementary to a mold cavity. Structure-property relations were examined using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermal conductivity, compression values, scanning electron microscopy (SEM), x-ray micro-computed tomography (micro-CT), and automated multiunit composting system (AMCS). The results show that mechanical properties are reduced with the introduction of kenaf core reinforcement while thermal conductivity and biodegradability display a noticeable improvement. This shows that in application properties can be improved while establishing a responsible end-of-life choice.
Date: August 2016
Creator: Hoyt, Zachary
Partner: UNT Libraries

Defining a Relationship between the Flexibility of Materials and Other Properties

Description: Brittleness of a polymeric material has a direct relationship with the material's performance and furthermore shares an inverse relationship with that material's flexibility. The concept of flexibility of materials has been understood but merely explained with a hand-waving manner. Thus, it has never been defined by a calculation, thereby lacking the ability to determine a definite quantitative value for this characteristic. Herein, an equation is presented and proven which makes determining the value of flexibility possible. Such an equation could be used to predict a material's flexibility prior to testing it, thus saving money and valuable time for those in research and in industry. Substantiating evidence showing the relationship between flexibility of polymers and their respective mechanical properties is presented. Further relating the known tensile properties of a given polymer to its flexibility is expanded upon by proving its relationship to the linear coefficient of thermal expansion for each polymer. Additionally, determining flexibility for polymers whose chemical structures have been compromised by respective solvents has also been investigated to predict a solvent's impact on a polymer after exposure. Polymers examined through literature include polycarbonate (PC), polystyrene (PS), teflon (PTFE), styrene acrylonitrile (SAN), acrylonitrile butadiene styrene (ABS), poly(ethersulfone) (PES), low density polyethylene (LDPE), polypropylene (PP), poly(methyl methacrylate) (PMMA), and poly(vinylidene fluoride) (PVDF). Further testing and confirmation was made using PC, PS, ABS, LDPE, PP, and PMMA.
Date: May 2018
Creator: Osmanson, Allison Theresa
Partner: UNT Libraries

Development of a Novel Grease Resistant Functional Coatings for Paper-based Packaging and Assessment of Application by Flexographic Press

Description: Recent commercial developments have created a need for alternative materials and methods for imparting oil/grease resistance to paper and/or paperboard used in packaging. The performance of a novel grease resistant functional coating comprised of polyvinyl alcohol (PVA), sodium tetraborate pentahydrate (borate) and acetonedicarboxylic acid (ACDA) and the application of said coating by means of flexographic press is presented herein. Application criteria is developed, testing procedures described, and performance assessment of the developed coating materials are made. SEM images along with contact angle data suggest that coating performance is probably attributable to decreased mean pore size in conjunction with a slightly increased surface contact angle facilitated by crosslinking of PVA molecules by both borate ions and ACDA.
Date: August 2004
Creator: Brown, Robert W.
Partner: UNT Libraries

Effect of Retting on Surface Chemistry and Mechanical Performance Interactions in Natural Fibers for High Performance Polymer Composites

Description: Sustainability through replacement of non-renewable fibers with renewable fibers is an ecological need. Impact of transportation costs from South-east Asia on the life cycle analysis of the composite is detrimental. Kenaf is an easily grown crop in America. Farm based processing involves placing the harvested crop in rivers and ponds, where retting of the fibers from the plant (separation into fibers) can take 2 weeks or more. The objective of this thesis is to analyze industrially viable processes for generating fibers and examine their synergistic impact on mechanical performance, surface topography and chemistry for functional composites. Comparison has been made with commercial and conventional retting process, including alkali retting, enzymatic retting, retting in river and pond water (retting occurs by natural microbial population) with controlled microbial retting. The resulting kenaf fibers were characterized by dynamic mechanical analysis (DMA), Raman spectroscopy (FT-Raman), Fourier transform infrared spectroscopy (FT-IR), polarized optical microscopy (POM), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) optical fluorescence microscopy, atomic force microscopy (AFM) and carbohydrate analysis. DMA results showed that pectinase and microbe treated fibers have superior viscoelastic properties compared to alkali retting. XPS, Raman, FT-IR and biochemical analysis indicated that the controlled microbial and pectinase retting was effective in removing pectin, hemicellulose and lignin. SEM, optical microscopy and AFM analysis showed the surface morphology and cross sectional architecture were preserved in pectinase retting. Experimental results showed that enzymatic retting at 48 hours and controlled microbial retting at 72 hours yield uniform and superior quality fibers compared to alkali and natural retting process. Controlled microbial retting is an inexpensive way to produce quality fibers for polymer composite reinforcement.
Date: May 2013
Creator: Ramesh, Dinesh
Partner: UNT Libraries

Evaluation of hydrogen trapping in HfO2 high-κ dielectric thin films.

Description: Hafnium based high-κ dielectrics are considered potential candidates to replace SiO2 or SiON as the gate dielectric in complementary metal oxide semiconductor (CMOS) devices. Hydrogen is one of the most significant elements in semiconductor technology because of its pervasiveness in various deposition and optimization processes of electronic structures. Therefore, it is important to understand the properties and behavior of hydrogen in semiconductors with the final aim of controlling and using hydrogen to improve electronic performance of electronic structures. Trap transformations under annealing treatments in hydrogen ambient normally involve passivation of traps at thermal SiO2/Si interfaces by hydrogen. High-κ dielectric films are believed to exhibit significantly higher charge trapping affinity than SiO2. In this thesis, study of hydrogen trapping in alternate gate dielectric candidates such as HfO2 during annealing in hydrogen ambient is presented. Rutherford backscattering spectroscopy (RBS), elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA) were used to characterize these thin dielectric materials. It was demonstrated that hydrogen trapping in bulk HfO2 is significantly reduced for pre-oxidized HfO2 prior to forming gas anneals. This strong dependence on oxygen pre-processing is believed to be due to oxygen vacancies/deficiencies and hydrogen-carbon impurity complexes that originate from organic precursors used in chemical vapor depositions (CVD) of these dielectrics.
Date: August 2006
Creator: Ukirde, Vaishali
Partner: UNT Libraries

Evolution of Precipitates and Their Influence on the Mechanical Properties of β-Titanium Alloys

Description: Over the last few decades, body-centered-cubic (bcc) beta (β) titanium alloys have largely been exploited as structural alloys owing to the richness in their microstructural features. These features, which lead to a unique combination of high specific strength and ductility, excellent hardenability, good fatigue performance, and corrosion resistance, make these alloys viable candidates for many applications, including aerospace, automobile, and orthopedic implants. The mechanical properties of these alloys strongly depend on the various phases present; which can be controlled by thermomechanical treatments and/or alloy design. The two most important and studied phases are the metastable ω phase and the stable α phase. The present study focuses on the microstructural evolution and the mechanical behavior of these two phases in a model β-Ti alloy, binary Ti-12wt. %Mo alloy, and a commercial β-Ti alloy, β-21S. Microstructures containing athermal and isothermal ω phases in the binary Ti-12wt. %Mo alloy are obtained under specific accurate temperature controlled heat treatments. The formation and the evolution of the ω-phase based microstructures are investigated in detail via various characterization techniques such as SEM, TEM, and 3D atom probe tomography. The mechanical behavior was investigated via quasi-static tensile loading; at room and elevated temperatures. The effect of β phase stability on the deformation behavior is then discussed. Similar to the Ti-12wt. %Mo, the formation and the evolution of the athermal and isothermal ω phases in the commercial β-21S alloy was studied under controlled heat treatments. The structural and compositional changes were tracked using SEM, TEM, HR-STEM, and 3D atom probe tomography (3D-APT). The presence of additional elements in the commercial alloy were noted to make a considerable difference in the evolution and morphology of the ω phase and also the mechanical behavior of the alloys. The Portevin-Le Chatelier (PLC) like effect was observed in iii this alloy at ...
Date: August 2017
Creator: Mantri, Srinivas Aditya
Partner: UNT Libraries

Exceptional Properties in Friction Stir Processed Beta Titanium Alloys and an Ultra High Strength Steel

Description: The penchant towards development of high performance materials for light weighting engineering systems through various thermomechanical processing routes has been soaring vigorously. Friction stir processing (FSP) - a relatively new thermomechanical processing route had shown an excellent promise towards microstructural modification in many Al and Mg alloy systems. Nevertheless, the expansion of this process to high temperature materials like titanium alloys and steels is restricted by the limited availability of tool materials. Despite it challenges, the current thesis sets a tone for the usage of FSP to tailor the mechanical properties in titanium alloys and steels. FSP was carried out on three near beta titanium alloys, namely Ti6246, Ti185 and Tiβc with increasing β stability index, using various tool rotation rates and at a constant tool traverse speed. Microstructure and mechanical property relationship was studied using experimental techniques such as SEM, TEM, mini tensile testing and synchrotron x-ray diffraction. Two step aging on Ti6246 had resulted in an UTS of 2.2GPa and a specific strength around 500 MPa m3/mg, which is about 40% greater than any commercially available metallic material. Similarly, FSP on an ultra-high strength steel―Eglin steel had resulted in a strength greater than 2GPa with a ductility close to 10% at around 4mm from the top surface of stir zone (SZ). Experimental techniques such as microhardness, mini-tensile testing and SEM were used to correlate the microstructure and properties observed inside SZ and HAZ's of the processed region. A 3D temperature modeling was used to predict the peak temperature and cooling rates during FSP. The exceptional strength ductility combinations inside the SZ is believed to be because of mixed microstructure comprised of various volume fractions of phases such as martensite, bainite and retained austenite.
Date: May 2017
Creator: Tungala, Vedavyas
Partner: UNT Libraries

Fatigue Behavior of A356 Aluminum Alloy

Description: Metal fatigue is a recurring problem for metallurgists and materials engineers, especially in structural applications. It has been responsible for many disastrous accidents and tragedies in history. Understanding the micro-mechanisms during cyclic deformation and combating fatigue failure has remained a grand challenge. Environmental effects, like temperature or a corrosive medium, further worsen and complicate the problem. Ultimate design against fatigue must come from a materials perspective with a fundamental understanding of the interaction of microstructural features with dislocations, under the influence of stress, temperature, and other factors. This research endeavors to contribute to the current understanding of the fatigue failure mechanisms. Cast aluminum alloys are susceptible to fatigue failure due to the presence of defects in the microstructure like casting porosities, non-metallic inclusions, non-uniform distribution of secondary phases, etc. Friction stir processing (FSP), an emerging solid state processing technique, is an effective tool to refine and homogenize the cast microstructure of an alloy. In this work, the effect of FSP on the microstructure of an A356 cast aluminum alloy, and the resulting effect on its tensile and fatigue behavior have been studied. The main focus is on crack initiation and propagation mechanisms, and how stage I and stage II cracks interact with the different microstructural features. Three unique microstructural conditions have been tested for fatigue performance at room temperature, 150 °C and 200 °C. Detailed fractography has been performed using optical microscopy, scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). These tools have also been utilized to characterize microstructural aspects like grain size, eutectic silicon particle size and distribution. Cyclic deformation at low temperatures is very sensitive to the microstructural distribution in this alloy. The findings from the room temperature fatigue tests highlight the important role played by persistent slip bands (PSBs) in fatigue crack initiation. At room ...
Date: May 2016
Creator: Nelaturu, Phalgun
Partner: UNT Libraries

Friction Stir Welding of High Strength Precipitation Strengthened Aluminum Alloys

Description: Rising demand for improved fuel economy and structural efficiency are the key factors for use of aluminum alloys for light weighting in aerospace industries. Precipitation strengthened 2XXX and 7XXX aluminum alloys are the key aluminum alloys used extensively in aerospace industry. Welding and joining is the critical step in manufacturing of integrated structures. Joining of precipitation strengthened aluminum alloys using conventional fusion welding techniques is difficult and rather undesirable in as it produces dendritic microstructure and porosities which can undermine the structural integrity of weldments. Friction stir welding, invented in 1991, is a solid state joining technique inherently benefitted to reduces the possibility of common defects associated with fusion based welding techniques. Weldability of various 2XXX and 7XXX aluminum alloys via friction stir welding was investigated. Microstructural and mechanical property evolution during welding and after post weld heat treatment was studied using experimental techniques such as transmission electron microscopy, differential scanning calorimetry, hardness testing, and tensile testing. Various factors such as peak welding temperature, cooling rate, external cooling methods (thermal management) which affects the strength of the weldment were studied. Post weld heat treatment of AL-Mg-Li alloy produced joint as strong as the parent material. Modified post weld heat treatment in case of welding of Al-Zn-Mg alloy also resulted in near 100% joint efficiency whereas the maximum weld strength achieved in case of welds of Al-Cu-Li alloys was around 80-85% of parent material strength. Low dislocation density and high nucleation barrier for the precipitates was observed to be responsible for relatively low strength recovery in Al-Cu-Li alloys as compared to Al-Mg-Li and Al-Zn-Mg alloys.
Date: August 2016
Creator: Sidhar, Harpreet
Partner: UNT Libraries

Friction Stir Welding of Precipitation Strengthened Aluminum 7449 Alloys

Description: The Al-Zn-Mg-Cu (7XXX series) alloys are amongst the strongest aluminum available. However, they are considered unweldable with conventional fusion techniques due to the negative effects that arise with conventional welding, including hydrogen porosity, hot cracking, and stress corrosion cracking. For this reason, friction stir welding has emerged as the preferred technique to weld 7XXX series alloys. Aluminum 7449 is one of the highest strength 7XXX series aluminum alloy. This is due to its higher zinc content, which leads to a higher volume fraction of eta' precipitates. It is typically used in a slight overaged condition since it exhibits better corrosion resistance. In this work, the welds of friction stir welded aluminum 7449 were studied extensively. Specific focus was placed in the heat affected zone (HAZ) and nugget. Thermocouples were used in the heat affected zone for three different depths to obtain thermal profiles as well as cooling/heating profiles. Vicker microhardness testing, transmission electron microscope (TEM), and differential scanning calorimeter (DSC) were used to characterize the welds. Two different tempers of the alloy were used, a low overaged temper and a high overaged temper. A thorough comparison of the two different tempers was done. It was found that highly overaged aluminum 7449 tempers show better properties for friction stir welding. A heat gradient along with a high conducting plate (Cu) used at the bottom of the run, resulted in welds with two separate microstructures in the nugget. Due to the microstructure at the bottom of the nugget, higher strength than the base metal is observed. Furthermore, the effects of natural aging and artificial aging were studied to understand re-precipitation. Large improvements in strength are observed after natural aging throughout the welds, including improvements in the HAZ.
Date: August 2016
Creator: Martinez, Nelson Y
Partner: UNT Libraries

Functionalization and characterization of porous low-κ dielectrics.

Description: The incorporation of fluorine into SiO2 has been shown to reduce the dielectric constant of the existing materials by reducing the electrical polarizability. However, the incorporation of fluorine has also been shown to decrease film stability. Therefore, new efforts have been made to find different ways to further decrease the relative dielectric constant value of the existing low-k materials. One way to reduce the dielectric constant is by decreasing its density. This reduces the amount of polarizable materials. A good approach is increasing porosity of the film. Recently, fluorinated silica xerogel films have been identified as potential candidates for applications such as interlayer dielectric materials in CMOS technology. In addition to their low dielectric constants, these films present properties such as low refractive indices, low thermal conductivities, and high surface areas. Another approach to lower k is incorporating lighter atoms such as hydrogen or carbon. Silsesquioxane based materials are among them. However, additional integration issues such as damage to these materials caused by plasma etch, plasma ash, and wet etch processes are yet to be overcome. This dissertation reports the effects of triethoxyfluorosilane-based (TEFS) xerogel films when reacted with silylation agents. TEFS films were employed because they form robust silica networks and exhibit low dielectric constants. However, these films readily absorb moisture. Employing silylation reactions enhances film hydrophobicity and permits possible introduction of this film as an interlayer dielectric material. Also, this work describes the effects of SC-CO2 in combination with silylating agents used to functionalize the damaged surface of the ash-damaged MSQ films. Ashed MSQ films exhibit increased water adsorption and dielectric constants due to the carbon depletion and modification of the properties of the low-k material caused by interaction with plasma species. CO2 is widely used as a supercritical solvent, because of its easily accessible critical point, low ...
Date: May 2005
Creator: Orozco-Teran, Rosa Amelia
Partner: UNT Libraries

Investigation into the Semiconducting and Device Properties of MoTe2 and MoS2 Ultra-Thin 2D Materials

Description: The push for electronic devices on smaller and smaller scales has driven research in the direction of transition metal dichalcogenides (TMD) as new ultra-thin semiconducting materials. These ‘two-dimensional' (2D) materials are typically on the order of a few nanometers in thickness with a minimum all the way down to monolayer. These materials have several layer-dependent properties such as a transition to direct band gap at single-layer. In addition, their lack of dangling bonding and remarkable response to electric fields makes them promising candidates for future electronic devices. For the purposes of this work, two 2D TMDs were studied, MoS2 and MoTe2. This dissertation comprises of three sections, which report on exploration of charge lifetimes, investigation environmental stability at elevated temperatures in air, and establishing feasibility of UV laser annealing for large area processing of 2D TMDs, providing a necessary knowledge needed for practical use of these 2D TMDs in optoelectronic and electronic devices. (1) A study investigating the layer-dependence on the lifetime of photo-generated electrons in exfoliated 2D MoTe2 was performed. The photo-generated lifetimes of excited electrons were found to be strongly surface dependent, implying recombination events are dominated by Shockley-Read-Hall effects (SRH). Given this, the measured lifetime was shown to increase with the thickness of exfoliated MoTe¬2; in agreement with SRH recombination. Lifetimes were also measured with an applied potential bias and demonstrated to exhibit a unique voltage dependence. Shockley-Read-Hall recombination effects, driven by surface states were attributed to this result. The applied electric field was also shown to control the surface recombination velocity, which lead to an unexpected rise and fall of measured lifetimes as the potential bias was increased from 0 to 0.5 volts. (2) An investigation into the environmental stability of exfoliated 2D MoTe2 was conducted using a passivation layer of amorphous boron nitride as a ...
Date: May 2018
Creator: Sirota, Benjamin
Partner: UNT Libraries

Microstructural Evolution and Mechanical Response of Materials by Design and Modeling

Description: Mechanical properties of structural materials are highly correlated to their microstructure. The relationship between microstructure and mechanical properties can be established experimentally. The growing need for structural materials in industry promotes the study of microstructural evolution of materials by design using computational approaches. This thesis presents the microstructural evolution of two different structural materials. The first uses a genetic algorithm approach to study the microstructural evolution of a high-temperature nickel-based oxide-dispersion-strengthened (ODS) alloy. The chosen Ni-20Cr ODS system has nano Y2O3 particles for dispersion strengthening and submicron Al2O3 for composite strengthening. Synergistic effects through the interaction of small dispersoids and large reinforcements improved high-temperature strength. Optimization considered different weight factors on low temperature strength, ductility, and high temperature strength. Simulation revealed optimal size and volume fraction of dispersoids and reinforced particles. Ni-20Cr-based alloys were developed via mechanical alloying for computational optimization and validation. The Ni-20Cr-1.2Y2O3-5Al2O3 alloy exhibited significant reduction in the minimum creep rate (on the order of 10-9 s-1) at 800oC and 100 MPa. The second considers the microstructural evolution of AA 7050 alloy during friction stir welding (FSW). Modeling the FSW process includes thermal, material flow, microstructural and strength modeling. Three-dimensional material flow and heat transfer model was developed for friction stir welding process of AA 7050 alloy to predict thermal histories and extent of deformation. Peak temperature decreases with the decrease in traverse speed at constant advance per revolution, while the increase in tool rotation rate enhances peak temperature. Shear strain is higher than the longitudinal and transverse strain for lower traverse speed and tool rotation rate; whereas for higher traverse speed and tool rotation rate, shear and normal strain acquire similar values. Precipitation distribution simulation using TC-PRISMA predicts the presence of η' and η in the as-received AA 7050-T7451 alloy and mostly η in the friction ...
Date: May 2017
Creator: Dutt, Aniket Kumar
Partner: UNT Libraries

Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium-Chromium Alloys

Description: A compositionally graded Ti-xCr (10≤x≤30 wt%) alloy has been fabricated using Laser Engineered Net Shaping (LENSTM) to study the microstructural phase evolution along a compositional gradient in both as-deposited and heat treated conditions (1000°C followed by furnace cooling or air cooling). The alloys were characterized by SEM BSE imaging, XRD, EBSD, TEM and micro-hardness measurements to determine processing-structure-property relations. For the as-deposited alloy, α-Ti, β-Ti, and TiCr2 (C15 Laves) phases exist in varying phase fractions, which were influential in determining hardness values. With the furnace cooled alloy, there was more homogeneous nucleation of α phase throughout the sample with a larger phase fraction of TiCr2 resulting in increased hardness values. When compared to the air cooled alloy, there was absence of wide scale nucleation of α phase and formation of ω phase within the β phase due to the quicker cooling from elevated temperature. At lower concentrations of Cr, the kinetics resulted in a diffusionless phase transformation of ω phase with increased hardness and a lower phase fraction of TiCr2. In contrast at higher Cr concentrations, α phase separation reaction occurs where the β phase is spinodally decomposed to Cr solute-lean β1 and solute-rich β2 resulting in reduced hardness.
Date: May 2016
Creator: Thomas, Jonova
Partner: UNT Libraries

Microstructure for Enhanced Plasticity and Toughness

Description: Magnesium is the lightest metal with a very high specific strength. However, its practical applicability is limited by its toughness and reliability. Mg, being HCP has low ductility. This makes the improvement of toughness a grand challenge in Mg alloys. Friction stir processing (FSP) is a thermomechanical technique used to effect microstructural modification. Here, FSP was utilized to affect the toughness of WE43 sheets through microstructural modification. Room temperature Kahn-type tests were conducted to measure the toughness of WE43 sheets. Microscopic techniques (SEM, TEM) was utilized to study the effect of various microstructural factors like grain size, texture, constituent particles, precipitates on crack initiation and propagation. Tensile properties were evaluated by mini-tensile tests. Crack growth in WE43 sheets was also affected by mechanics and digital image correlation (DIC) was utilized to study the plastic zone size. The underlying mechanisms affecting toughness of these sheets were understood which will help in formulating ways in improving it. WE43 nanocomposites were fabricated via FSP. Uniform distribution of reinforcements was obtained in the composites. Improved mechanical properties like that of enhanced strength, increased hardness and stiffness were obtained. But contrary to other metal matrix composites which show reduction in ductility with incorporation of ceramic reinforcements, the nanocomposites showed good strength-ductility combination. The composites were precisely characterized and mechanisms governing this property were studied. The nano-length of the reinforcements was observed to be the main criteria and the dislocation-particle interaction, the main reason behind the strength-ductility property.
Date: August 2016
Creator: Das, Shamiparna
Partner: UNT Libraries

Molecular Dynamics Simulations of the Structure and Properties of Boron Containing Oxide Glasses: Empirical Potential Development and Applications

Description: Potential parameters that can handle multi-component oxide glass systems especially boron oxide are very limited in literature. One of the main goals of my dissertation is to develop empirical potentials to simulate multi-component oxide glass systems with boron oxide. Two approaches, both by introducing the composition dependent parameter feature, were taken and both led to successful potentials for boron containing glass systems after extensive testing and fitting. Both potential sets can produce reasonable glass structures of the multi-component oxide glass systems, with structure and properties in good agreement with experimental data. Furthermore, we have tested the simulation settings such as system size and cooling rate effects on the results of structures and properties of MD simulated borosilicate glasses. It was found that increase four-coordinated boron with decreasing cooling rate and system size above 1000 atoms is necessary to produce converged structure. Another application of the potentials is to simulate a six-component nuclear waste glass, international simple glass (ISG), which was for first time simulated using the newly developed parameters. Structural features obtained from simulations agree well with the experimental results. In addition, two series of sodium borosilicate and boroaluminosilicate glasses were simulated with the two sets of potentials to compare and evaluate their applicability and deficiency. Various analyses on the structures and properties such as pair distribution function, total correlation function, coordination number analysis, Qn distribution function, ring size distribution function, vibrational density of states and mechanical properties were performed. This work highlights the challenge of MD simulations of boron containing glasses and the capability of the new potential parameters that enable simulations of wide range of mixed former glasses to investigate new structure features and design of new glass compositions for various applications.
Date: December 2017
Creator: Deng, Lu
Partner: UNT Libraries

P-type Doping of Pulsed Laser Deposited WS2 with Nb

Description: Layered transition metal dichalcogenides (TMDs) are potentially ideal semiconducting materials due to their in-plane carrier transport and tunable bandgaps, which are favorable properties for electrical and optoelectronic applications. However, the ability to make p-n junctions is the foundation of semiconductor devices, and therefore the ability to achieve reproducible p- and n-type doping in TMD semiconducting materials is critical. In this work, p-type substitutional doping of pulsed laser deposited WS2 films with niobium is reported. The synthesis technique of the PLD target with dopant incorporation which also ensures host material stoichiometry is presented. Hall electrical measurements confirmed stable p-type conductivity of the grown films. Structural characterization revealed that there was no segregation phase of niobium in the fabricated films and x-ray phtoelectron spectroscopy (xps) characterization suggest that the p-type doping is due to Nb4+ which results in p-type behavior. Stable hole concentrations as high as 10E21(cm-3) were achieved. The target fabrication and thin film deposition technique reported here can be used for substitutional doping of other 2D materials to obtain stable doping for device applications.
Date: December 2017
Creator: Egede, Eforma Justin
Partner: UNT Libraries

Preventing Thermal Degradation of Pvc Insulation by Mixtures of Cross-Linking Agents and Antioxidants

Description: Poly(vinyl chloride)(PVC) wire and cable insulation has poor thermal stability, causing the plasticizer to separate from the PVC chain and produce an oily residue, lowering the tensile elongation at break and thus increasing brittleness. We have added 4 wt.% of three different types of cross-linking agents and antioxidants, as well as mixtures of both, to improve the thermal stability of the plasticizer and tensile properties of PVC after thermal exposure. We performed tensile tests, tribological tests, profilometry, scanning electron microscopy(SEM) and water absorption determination before and after thermal exposure at 136 ℃ for 1 week. After adding the agents, elongation at break increased by 10 to 20 % while the wear rate and water absorption were lower than for the control sample. Less voids are seen in the SEM images after adding these two kinds of agents. The thermal resistance of the PVC cable insulation is best enhanced by combinations of cross-linking agents and antioxidants.
Date: May 2018
Creator: Kim, Taehwan
Partner: UNT Libraries

Processing-Structure-Property Relationships of Spark Plasma Sintered Boron Carbide and Titanium Diboride Ceramic Composites

Description: The aim of this study was to understand the processing – structure – property relationships in spark plasma sintered (SPS) boron carbide (B4C) and B4C-titanium diboride (TiB2) ceramic composites. SPS allowed for consolidation of both B4C and B4C-TiB2 composites without sintering additives, residual phases, e.g., graphite, and excessive grain growth due to long sintering times. A selection of composite compositions in 20% TiB2 feedstock powder increments from 0% to 100%, was sintered at 1900°C for 25 minutes hold time. A homogeneous B4C-TiB2 composite microstructure was determined with excellent distribution of TiB2 phase, while achieving ~99.5% theoretical density. An optimum B4C-23 vol.% TiB2 composite composition with low density of ~3.0 g/cm3 was determined that exhibited ~30-35% increase in hardness, fracture toughness, and flexural bend strength compared to commercial armor-grade B4C. This is a result of a) no residual graphitic carbon in the composites, b) interfacial microcrack toughening due to thermal expansion coefficient differences placing the B4C matrix in compression and TiB2 phase in tension, and c) TiB2 phase aids in crack deflection thereby increasing the amount of intergranular fracture. Collectively, the addition of TiB2 serves as a strengthening and toughening agent, and SPS shows promise for the manufacture of hybrid ceramic composites.
Date: May 2018
Creator: Rubink, William S
Partner: UNT Libraries

Reactions and Interfacial Behaviors of the Water–Amorphous Silica System from Classical and Ab Initio Molecular Dynamics Simulations

Description: Due to the wide application of silica based systems ranging from microelectronics to nuclear waste disposal, detailed knowledge of water-silica interactions plays an important role in understanding fundamental processes, such as glass corrosion and the long term reliability of devices. In this dissertation, atomistic computer simulation methods have been used to explore and identify the mechanisms of water-silica reactions and the detailed processes that control the properties of the water-silica interfaces due to their ability to provide atomic level details of the structure and reaction pathways. The main challenges of the amorphous nature of the silica based systems and nano-porosity of the structures were overcome by a combination of simulation methodologies based on classical molecular dynamics (MD) simulations with Reactive Force Field (ReaxFF) and density functional theory (DFT) based ab initio MD simulations. Through the development of nanoporous amorphous silica structure models, the interactions between water and the complex unhydroxylated internal surfaces identified the unusual stability of strained siloxane bonds in high energy ring structure defects, as well as the hydroxylation reaction kinetics, which suggests the difficulty in using DFT methods to simulate Si-O bond breakage with reasonable efficiency. Another important problem addressed is the development of silica gel structures and their interfaces, which is considered to control the long term residual dissolution rate in borosilicate glasses. Through application of the ReaxFF classical MD potential, silica gel structures which mimic the development of interfacial layers during silica dissolution were created A structural model, consisting of dense silica, silica gel, and bulk water, and the related interfaces was generated, to represent the dissolution gel structure. High temperature evolution of the silica-gel-water (SGW) structure was performed through classical MD simulation of the system, and growth of the gel into the water region occurred, as well as the formation of intermediate range structural ...
Date: May 2016
Creator: Rimsza, Jessica M
Partner: UNT Libraries

Recycling of PVC and XLPE for High Impact Resistance in Spool Development

Description: My work focuses on taking waste wire-grade PVC = poly(vinyl chloride) and waste XLPE = cross-linked polyethylene and recycle them into small wire/cable spool technology in order to reduce waste cost and reduce cost of spool production. The PVC and XLPE were provided by Encore Wire Corp. of McKinney, TX; they have also defined the standard to which I am comparing my results. The end goal is to incorporate as much PVC and XLPE into the spools while maintaining material toughness, impact resistance, as well as cost-effectiveness in the implementation of the waste materials. The work has been divided into two primary sections, the first is focused on improving material strength through the addition of ceramic fillers. The second section is focused on adding PVC and XLPE into a stronger and highly cohesive polymer matrix and optimizing the concentration of the waste products. Since XLPE is non-polar while PVC is strongly polar, compatibilizers such as CPE (chlorinated polyethylene) and MA-DCP (maleic anhydride with dicumyl peroxide) were used to improve interactions between polar and non-polar constituents. Testing involved the tensile mechanical properties, tribology and thermal properties, namely dynamic mechanical analysis (DMA) and evaluation of thermal degradation by thermogravimetric analysis (TGA). Combining PVC and XLPE together is not economically feasible with current compatiblizers. At the same time, introduction of PVC waste or XLPE waste with sufficient properties of the resulting composites is doable.
Date: May 2018
Creator: Granowski, Gregory A
Partner: UNT Libraries

Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings

Description: The tribological properties of cold sprayed Ni-WC metal matrix composite (MMC) coatings were investigated under dry sliding conditions from room temperature (RT) up to 400°C, and during thermal cycling to explore their temperature adaptive friction and wear behavior. Characterization of worn surfaces was conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy to determine the chemical and microstructural evolution during friction testing. Data provided insights into tribo-oxide formation mechanisms controlling friction and wear. It was determined that the steady-state coefficient of friction (CoF) decreased from 0.41 at RT to 0.32 at 400˚C, while the wear rate increased from 0.5×10-4 mm3/N·m at RT to 3.7×10-4 mm3/N·m at 400˚C. The friction reduction is attributed primarily to the tribochemical formation of lubricious NiO on both the wear track and transfer film adhered to the counterface. The increase in wear is attributed to a combination of thermal softening of the coating and a change in the wear mechanism from adhesive to more abrasive. In addition, the coating exhibited low friction behavior during thermal cycling by restoring the lubricious NiO phase inside the wear track at high temperature intervals. Therefore, cold sprayed Ni-WC coatings are potential candidates for elevated temperature and thermally self-adaptive sliding wear applications.
Date: August 2018
Creator: Torgerson, Tyler B.
Partner: UNT Libraries