UNT Theses and Dissertations - 26 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

An Analysis of Motivational Cues in Virtual Environments.

Description: Guiding navigation in virtual environments (VEs) is a challenging task. A key issue in the navigation of a virtual environment is to be able to strike a balance between the user's need to explore the environment freely and the designer's need to ensure that the user experiences all the important events in the VE. This thesis reports on a study aimed at comparing the effectiveness of various navigation cues that are used to motivate users towards a specific target location. The results of this study indicate some significant differences in how users responded to the various cues.
Date: December 2003
Creator: Voruganti, Lavanya
Partner: UNT Libraries

Automated Defense Against Worm Propagation.

Description: Worms have caused significant destruction over the last few years. Network security elements such as firewalls, IDS, etc have been ineffective against worms. Some worms are so fast that a manual intervention is not possible. This brings in the need for a stronger security architecture which can automatically react to stop worm propagation. The method has to be signature independent so that it can stop new worms. In this thesis, an automated defense system (ADS) is developed to automate defense against worms and contain the worm to a level where manual intervention is possible. This is accomplished with a two level architecture with feedback at each level. The inner loop is based on control system theory and uses the properties of PID (proportional, integral and differential controller). The outer loop works at the network level and stops the worm to reach its spread saturation point. In our lab setup, we verified that with only inner loop active the worm was delayed, and with both loops active we were able to restrict the propagation to 10% of the targeted hosts. One concern for deployment of a worm containment mechanism was degradation of throughput for legitimate traffic. We found that with proper intelligent algorithm we can minimize the degradation to an acceptable level.
Date: December 2005
Creator: Patwardhan, Sudeep
Partner: UNT Libraries

Boosting for Learning From Imbalanced, Multiclass Data Sets

Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared to several state-of-the-art algorithms for imbalanced, multi-class classification problems. More importantly, the sensitivity improvement of the minority classes using RegBoost is accompanied with the improvement of the overall accuracy for all classes. With unpredictability regularization, a diverse group of classifiers are created and the maximum accuracy improvement reaches above 24%. Using stratified undersampling, RegBoost exhibits the best efficiency. The reduction in computational cost is significant reaching above 50%. As the volume of training data increase, the gain of efficiency with the proposed method becomes more significant.
Date: December 2013
Creator: Abouelenien, Mohamed
Partner: UNT Libraries

Bounded Dynamic Source Routing in Mobile Ad Hoc Networks

Description: A mobile ad hoc network (MANET) is a collection of mobile platforms or nodes that come together to form a network capable of communicating with each other, without the help of a central controller. To avail the maximum potential of a MANET, it is of great importance to devise a routing scheme, which will optimize upon the performance of a MANET, given the high rate of random mobility of the nodes. In a MANET individual nodes perform the routing functions like route discovery, route maintenance and delivery of packets from one node to the other. Existing routing protocols flood the network with broadcasts of route discovery messages, while attempting to establish a route. This characteristic is instrumental in deteriorating the performance of a MANET, as resource overhead triggered by broadcasts is directly proportional to the size of the network. Bounded-dynamic source routing (B-DSR), is proposed to curb this multitude of superfluous broadcasts, thus enabling to reserve valuable resources like bandwidth and battery power. B-DSR establishes a bounded region in the network, only within which, transmissions of route discovery messages are processed and validated for establishing a route. All route discovery messages reaching outside of this bounded region are dropped, thus preventing the network from being flooded. In addition B-DSR also guarantees loop-free routing and is robust for a rapid recovery when routes in the network change.
Date: August 2003
Creator: George, Glyco
Partner: UNT Libraries

Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures

Description: In recent years, brain computer interfaces (BCIs) have gained popularity in non-medical domains such as the gaming, entertainment, personal health, and marketing industries. A growing number of companies offer various inexpensive consumer grade BCIs and some of these companies have recently introduced the concept of BCI "App stores" in order to facilitate the expansion of BCI applications and provide software development kits (SDKs) for other developers to create new applications for their devices. The BCI applications access to users' unique brainwave signals, which consequently allows them to make inferences about users' thoughts and mental processes. Since there are no specific standards that govern the development of BCI applications, its users are at the risk of privacy breaches. In this work, we perform first comprehensive analysis of BCI App stores including software development kits (SDKs), application programming interfaces (APIs), and BCI applications w.r.t privacy issues. The goal is to understand the way brainwave signals are handled by BCI applications and what threats to the privacy of users exist. Our findings show that most applications have unrestricted access to users' brainwave signals and can easily extract private information about their users without them even noticing. We discuss potential privacy threats posed by current practices used in BCI App stores and then describe some countermeasures that could be used to mitigate the privacy threats. Also, develop a prototype which gives the BCI app users a choice to restrict their brain signal dynamically.
Date: May 2017
Creator: Bhalotiya, Anuj Arun
Partner: UNT Libraries

Data-Driven Decision-Making Framework for Large-Scale Dynamical Systems under Uncertainty

Description: Managing large-scale dynamical systems (e.g., transportation systems, complex information systems, and power networks, etc.) in real-time is very challenging considering their complicated system dynamics, intricate network interactions, large scale, and especially the existence of various uncertainties. To address this issue, intelligent techniques which can quickly design decision-making strategies that are robust to uncertainties are needed. This dissertation aims to conquer these challenges by exploring a data-driven decision-making framework, which leverages big-data techniques and scalable uncertainty evaluation approaches to quickly solve optimal control problems. In particular, following techniques have been developed along this direction: 1) system modeling approaches to simplify the system analysis and design procedures for multiple applications; 2) effective simulation and analytical based approaches to efficiently evaluate system performance and design control strategies under uncertainty; and 3) big-data techniques that allow some computations of control strategies to be completed offline. These techniques and tools for analysis, design and control contribute to a wide range of applications including air traffic flow management, complex information systems, and airborne networks.
Date: August 2016
Creator: Xie, Junfei
Partner: UNT Libraries

Hopfield Networks as an Error Correcting Technique for Speech Recognition

Description: I experimented with Hopfield networks in the context of a voice-based, query-answering system. Hopfield networks are used to store and retrieve patterns. I used this technique to store queries represented as natural language sentences and I evaluated the accuracy of the technique for error correction in a spoken question-answering dialog between a computer and a user. I show that the use of an auto-associative Hopfield network helps make the speech recognition system more fault tolerant. I also looked at the available encoding schemes to convert a natural language sentence into a pattern of zeroes and ones that can be stored in the Hopfield network reliably, and I suggest scalable data representations which allow storing a large number of queries.
Date: May 2004
Creator: Bireddy, Chakradhar
Partner: UNT Libraries

Improved Approximation Algorithms for Geometric Packing Problems With Experimental Evaluation

Description: Geometric packing problems are NP-complete problems that arise in VLSI design. In this thesis, we present two novel algorithms using dynamic programming to compute exactly the maximum number of k x k squares of unit size that can be packed without overlap into a given n x m grid. The first algorithm was implemented and ran successfully on problems of large input up to 1,000,000 nodes for different values. A heuristic based on the second algorithm is implemented. This heuristic is fast in practice, but may not always be giving optimal times in theory. However, over a wide range of random data this version of the algorithm is giving very good solutions very fast and runs on problems of up to 100,000,000 nodes in a grid and different ranges for the variables. It is also shown that this version of algorithm is clearly superior to the first algorithm and has shown to be very efficient in practice.
Date: December 2003
Creator: Song, Yongqiang
Partner: UNT Libraries

A Language and Visual Interface to Specify Complex Spatial Pattern Mining

Description: The emerging interests in spatial pattern mining leads to the demand for a flexible spatial pattern mining language, on which easy to use and understand visual pattern language could be built. It is worthwhile to define a pattern mining language called LCSPM to allow users to specify complex spatial patterns. I describe a proposed pattern mining language in this paper. A visual interface which allows users to specify the patterns visually is developed. Visual pattern queries are translated into the LCSPM language by a parser and data mining process can be triggered afterwards. The visual language is based on and goes beyond the visual language proposed in literature. I implemented a prototype system based on the open source JUMP framework.
Date: December 2006
Creator: Li, Xiaohui
Partner: UNT Libraries

Learning from small data set for object recognition in mobile platforms.

Description: Did you stand at a door with a bunch of keys and tried to find the right one to unlock the door? Did you hold a flower and wonder the name of it? A need of object recognition could rise anytime and any where in our daily lives. With the development of mobile devices object recognition applications become possible to provide immediate assistance. However, performing complex tasks in even the most advanced mobile platforms still faces great challenges due to the limited computing resources and computing power. In this thesis, we present an object recognition system that resides and executes within a mobile device, which can efficiently extract image features and perform learning and classification. To account for the computing constraint, a novel feature extraction method that minimizes the data size and maintains data consistency is proposed. This system leverages principal component analysis method and is able to update the trained classifier when new examples become available . Our system relieves users from creating a lot of examples and makes it user friendly. The experimental results demonstrate that a learning method trained with a very small number of examples can achieve recognition accuracy above 90% in various acquisition conditions. In addition, the system is able to perform learning efficiently.
Date: May 2016
Creator: Liu, Siyuan
Partner: UNT Libraries

Logic Programming Tools for Dynamic Content Generation and Internet Data Mining

Description: The phenomenal growth of Information Technology requires us to elicit, store and maintain huge volumes of data. Analyzing this data for various purposes is becoming increasingly important. Data mining consists of applying data analysis and discovery algorithms that under acceptable computational efficiency limitations, produce a particular enumeration of patterns over the data. We present two techniques based on using Logic programming tools for data mining. Data mining analyzes data by extracting patterns which describe its structure and discovers co-relations in the form of rules. We distinguish analysis methods as visual and non-visual and present one application of each. We explain that our focus on the field of Logic Programming makes some of the very complex tasks related to Web based data mining and dynamic content generation, simple and easy to implement in a uniform framework.
Date: December 2000
Creator: Gupta, Anima
Partner: UNT Libraries

Memory Management and Garbage Collection Algorithms for Java-Based Prolog

Description: Implementing a Prolog Runtime System in a language like Java which provides its own automatic memory management and safety features such as built--in index checking and array initialization requires a consistent approach to memory management based on a simple ultimate goal: minimizing total memory management time and extra space involved. The total memory management time for Jinni is made up of garbage collection time both for Java and Jinni itself. Extra space is usually requested at Jinni's garbage collection. This goal motivates us to find a simple and practical garbage collection algorithm and implementation for our Prolog engine. In this thesis we survey various algorithms already proposed and offer our own contribution to the study of garbage collection by improvements and optimizations for some classic algorithms. We implemented these algorithms based on the dynamic array algorithm for an all--dynamic Prolog engine (JINNI 2000). The comparisons of our implementations versus the originally proposed algorithm allow us to draw informative conclusions on their theoretical complexity model and their empirical effectiveness.
Date: August 2001
Creator: Zhou, Qinan
Partner: UNT Libraries

Mobile-Based Smart Auscultation

Description: In developing countries, acute respiratory infections (ARIs) are responsible for two million deaths per year. Most victims are children who are less than 5 years old. Pneumonia kills 5000 children per day. The statistics for cardiovascular diseases (CVDs) are even more alarming. According to a 2009 report from the World Health Organization (WHO), CVDs kill 17 million people per year. In many resource-poor parts of the world such as India and China, many people are unable to access cardiologists, pulmonologists, and other specialists. Hence, low skilled health professionals are responsible for screening people for ARIs and CVDs in these areas. For example, in the rural areas of the Philippines, there is only one doctor for every 10,000 people. By contrast, the United States has one doctor for every 500 Americans. Due to advances in technology, it is now possible to use a smartphone for audio recording, signal processing, and machine learning. In my thesis, I have developed an Android application named Smart Auscultation. Auscultation is a process in which physicians listen to heart and lung sounds to diagnose disorders. Cardiologists spend years mastering this skill. The Smart Auscultation application is capable of recording and classifying heart sounds, and can be used by public or clinical health workers. This application can detect abnormal heart sounds with up to 92-98% accuracy. In addition, the application can record, but not yet classify, lung sounds. This application will be able to help save thousands of lives by allowing anyone to identify abnormal heart and lung sounds.
Date: August 2017
Creator: Chitnis, Anurag Ashok
Partner: UNT Libraries

Multi-Agent Architecture for Internet Information Extraction and Visualization

Description: The World Wide Web is one of the largest sources of information; more and more applications are being developed daily to make use of this information. This thesis presents a multi-agent architecture that deals with some of the issues related to Internet data extraction. The primary issue addresses the reliable, efficient and quick extraction of data through the use of HTTP performance monitoring agents. A second issue focuses on how to make use of available data to take decisions and alert the user when there is change in data; this is done with the help of user agents that are equipped with a Defeasible reasoning interpreter. An additional issue is the visualization of extracted data; this is done with the aid of VRML visualization agents. The cited issues are discussed using stock portfolio management as an example application.
Date: August 2000
Creator: Gollapally, Devender R.
Partner: UNT Libraries

A Multi-Variate Analysis of SMTP Paths and Relays to Restrict Spam and Phishing Attacks in Emails

Description: The classifier discussed in this thesis considers the path traversed by an email (instead of its content) and reputation of the relays, features inaccessible to spammers. Groups of spammers and individual behaviors of a spammer in a given domain were analyzed to yield association patterns, which were then used to identify similar spammers. Unsolicited and phishing emails were successfully isolated from legitimate emails, using analysis results. Spammers and phishers are also categorized into serial spammers/phishers, recent spammers/phishers, prospective spammers/phishers, and suspects. Legitimate emails and trusted domains are classified into socially close (family members, friends), socially distinct (strangers etc), and opt-outs (resolved false positives and false negatives). Overall this classifier resulted in far less false positives when compared to current filters like SpamAssassin, achieving a 98.65% precision, which is well comparable to the precisions achieved by SPF, DNSRBL blacklists.
Date: December 2006
Creator: Palla, Srikanth
Partner: UNT Libraries

A Netcentric Scientific Research Repository

Description: The Internet and networks in general have become essential tools for disseminating in-formation. Search engines have become the predominant means of finding information on the Web and all other data repositories, including local resources. Domain scientists regularly acquire and analyze images generated by equipment such as microscopes and cameras, resulting in complex image files that need to be managed in a convenient manner. This type of integrated environment has been recently termed a netcentric sci-entific research repository. I developed a number of data manipulation tools that allow researchers to manage their information more effectively in a netcentric environment. The specific contributions are: (1) A unique interface for management of data including files and relational databases. A wrapper for relational databases was developed so that the data can be indexed and searched using traditional search engines. This approach allows data in databases to be searched with the same interface as other data. Fur-thermore, this approach makes it easier for scientists to work with their data if they are not familiar with SQL. (2) A Web services based architecture for integrating analysis op-erations into a repository. This technique allows the system to leverage the large num-ber of existing tools by wrapping them with a Web service and registering the service with the repository. Metadata associated with Web services was enhanced to allow this feature to be included. In addition, an improved binary to text encoding scheme was de-veloped to reduce the size overhead for sending large scientific data files via XML mes-sages used in Web services. (3) Integrated image analysis operations with SQL. This technique allows for images to be stored and managed conveniently in a relational da-tabase. SQL supplemented with map algebra operations is used to select and perform operations on sets of images.
Date: December 2006
Creator: Harrington, Brian
Partner: UNT Libraries

Network Security Tool for a Novice

Description: Network security is a complex field that is handled by security professionals who need certain expertise and experience to configure security systems. With the ever increasing size of the networks, managing them is going to be a daunting task. What kind of solution can be used to generate effective security configurations by both security professionals and nonprofessionals alike? In this thesis, a web tool is developed to simplify the process of configuring security systems by translating direct human language input into meaningful, working security rules. These human language inputs yield the security rules that the individual wants to implement in their network. The human language input can be as simple as, "Block Facebook to my son's PC". This tool will translate these inputs into specific security rules and install the translated rules into security equipment such as virtualized Cisco FWSM network firewall, Netfilter host-based firewall, and Snort Network Intrusion Detection. This tool is implemented and tested in both a traditional network and a cloud environment. One thousand input policies were collected from various users such as staff from UNT departments' and health science, including individuals with network security background as well as students with a non-computer science background to analyze the tool's performance. The tool is tested for its accuracy (91%) in generating a security rule. It is also tested for accuracy of the translated rule (86%) compared to a standard rule written by security professionals. Nevertheless, the network security tool built has shown promise to both experienced and inexperienced people in network security field by simplifying the provisioning process to result in accurate and effective network security rules.
Date: August 2016
Creator: Ganduri, Rajasekhar
Partner: UNT Libraries

Performance Evaluation of Data Integrity Mechanisms for Mobile Agents

Description: With the growing popularity of e-commerce applications that use software agents, the protection of mobile agent data has become imperative. To that end, the performance of four methods that protect the data integrity of mobile agents is evaluated. The methods investigated include existing approaches known as the Partial Result Authentication Codes, Hash Chaining, and Set Authentication Code methods, and a technique of our own design, called the Modified Set Authentication Code method, which addresses the limitations of the Set Authentication Code method. The experiments were run using the DADS agent system (developed at the Network Research Laboratory at UNT), for which a Data Integrity Module was designed. The experimental results show that our Modified Set Authentication Code technique performed comparably to the Set Authentication Code method.
Date: December 2003
Creator: Gunupudi, Vandana
Partner: UNT Libraries

Privacy Preserving EEG-based Authentication Using Perceptual Hashing

Description: The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing can prevent information leakage.
Date: December 2016
Creator: Koppikar, Samir Dilip
Partner: UNT Libraries

Procedural content creation and technologies for 3D graphics applications and games.

Description: The recent transformation of consumer graphics (CG) cards into powerful 3D rendering processors is due in large measure to the success of game developers in delivering mass market entertainment software that feature highly immersive and captivating virtual environments. Despite this success, 3D CG application development is becoming increasingly handicapped by the inability of traditional content creation methods to keep up with the demand for content. The term content is used here to refer to any data operated on by application code that is meant for viewing, including 3D models, textures, animation sequences and maps or other data-intensive descriptions of virtual environments. Traditionally, content has been handcrafted by humans. A serious problem facing the interactive graphics software development community is how to increase the rate at which content can be produced to keep up with the increasingly rapid pace at which software for interactive applications can now be developed. Research addressing this problem centers around procedural content creation systems. By moving away from purely human content creation toward systems in which humans play a substantially less time-intensive but no less creative part in the process, procedural content creation opens new doors. From a qualitative standpoint, these types of systems will not rely less on human intervention but rather more since they will depend heavily on direction from a human in order to synthesize the desired content. This research draws heavily from the entertainment software domain but the research is broadly relevant to 3D graphics applications in general.
Date: May 2005
Creator: Roden, Timothy E.
Partner: UNT Libraries

Resource Allocation in Mobile and Wireless Networks

Description: The resources (memory, power and bandwidth) are limited in wireless and mobile networks. Previous research has shown that the quality of service (QoS) of the mobile client can be improved through efficient resources management. This thesis contains two areas of research that are strongly interrelated. In the first area of research, we extended the MoSync Algorithm, a network application layer media synchronization algorithm, to allow play-out of multimedia packets by the base station upon the mobile client in a First-In-First-Out (FIFO), Highest-Priority-First (PQ), Weighted Fair-Queuing (WFQ) and Round-Robin (RR) order. In the second area of research, we make modifications to the DSR and TORA routing algorithms to make them energy aware routing protocols. Our research shows that the QoS of the mobile client can be drastically improved through effective resource allocation.
Date: August 2003
Creator: Owens II, Harold
Partner: UNT Libraries

Routing Optimization in Wireless Ad Hoc and Wireless Sensor Networks

Description: Wireless ad hoc networks are expected to play an important role in civilian and military settings where wireless access to wired backbone is either ineffective or impossible. Wireless sensor networks are effective in remote data acquisition. Congestion control and power consumption in wireless ad hoc networks have received a lot of attention in recent research. Several algorithms have been proposed to reduce congestion and power consumption in wireless ad hoc and sensor networks. In this thesis, we focus upon two schemes, which deal with congestion control and power consumption issues. This thesis consists of two parts. In the first part, we describe a randomization scheme for congestion control in dynamic source routing protocol, which we refer to as RDSR. We also study a randomization scheme for GDSR protocol, a GPS optimized variant of DSR. We discuss RDSR and RGDSR implementations and present extensive simulation experiments to study their performance. Our results indicate that both RGDSR and RDSR protocols outperform their non-randomized counterparts by decreasing the number of route query packets. Furthermore, a probabilistic congestion control scheme based on local tuning of routing protocol parameters is shown to be feasible. In the second part we present a simulation based performance study of energy aware data centric routing protocol, EAD, proposed by X. Cheng and A. Boukerche. EAD reduces power consumption by requiring only a small percentage of the network to stay awake. Our experiments show that EAD outperforms the well-known LEACH scheme.
Date: August 2003
Creator: Joseph, Linus
Partner: UNT Libraries

Smartphone-based Household Travel Survey - a Literature Review, an App, and a Pilot Survey

Description: High precision data from household travel survey (HTS) is extremely important for the transportation research, traffic models and policy formulation. Traditional methods of data collection were imprecise because they relied on people’s memories of trip information, such as date and location, and the remainder data had to be obtained by certain supplemental tools. The traditional methods suffered from intensive labor, large time consumption, and unsatisfactory data precision. Recent research trends to employ smartphone apps to collect HTS data. In this study, there are two goals to be addressed. First, a smartphone app is developed to realize a smartphone-based method only for data collection. Second, the researcher evaluates whether this method can supply or replace the traditional tools of HTS. Based on this premise, the smartphone app, TravelSurvey, is specially developed and used for this study. TravelSurvey is currently compatible with iPhone 4 or higher and iPhone Operating System (iOS) 6 or higher, except iPhone 6 or iPhone 6 plus and iOS 8. To evaluate the feasibility, eight individuals are recruited to participate in a pilot HTS. Afterwards, seven of them are involved in a semi-structured interview. The interview is designed to collect interviewees’ feedback directly, so the interview mainly concerns the users’ experience of TravelSurvey. Generally, the feedback is positive. In this study, the pilot HTS data is successfully uploaded to the server by the participants, and the interviewees prefer this smartphone-based method. Therefore, as a new tool, the smartphone-based method feasibly supports a typical HTS for data collection.
Date: December 2014
Creator: Wang, Qian
Partner: UNT Libraries

A Study of Perceptually Tuned, Wavelet Based, Rate Scalable, Image and Video Compression

Description: In this dissertation, first, we have proposed and implemented a new perceptually tuned wavelet based, rate scalable, and color image encoding/decoding system based on the human perceptual model. It is based on state-of-the-art research on embedded wavelet image compression technique, Contrast Sensitivity Function (CSF) for Human Visual System (HVS) and extends this scheme to handle optimal bit allocation among multiple bands, such as Y, Cb, and Cr. Our experimental image codec shows very exciting results in compression performance and visual quality comparing to the new wavelet based international still image compression standard - JPEG 2000. On the other hand, our codec also shows significant better speed performance and comparable visual quality in comparison to the best codec available in rate scalable color image compression - CSPIHT that is based on Set Partition In Hierarchical Tree (SPIHT) and Karhunen-Loeve Transform (KLT). Secondly, a novel wavelet based interframe compression scheme has been developed and put into practice. It is based on the Flexible Block Wavelet Transform (FBWT) that we have developed. FBWT based interframe compression is very efficient in both compression and speed performance. The compression performance of our video codec is compared with H263+. At the same bit rate, our encoder, being comparable to the H263+ scheme, with a slightly lower (Peak Signal Noise Ratio (PSNR) value, produces a more visually pleasing result. This implementation also preserves scalability of wavelet embedded coding technique. Thirdly, the scheme to handle optimal bit allocation among color bands for still imagery has been modified and extended to accommodate the spatial-temporal sensitivity of the HVS model. The bit allocation among color bands based on Kelly's spatio-temporal CSF model is designed to achieve the perceptual optimum for human eyes. A perceptually tuned, wavelet based, rate scalable video encoding/decoding system has been designed and implemented based on this ...
Date: May 2002
Creator: Wei, Ming
Partner: UNT Libraries