UNT Theses and Dissertations - 5 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Changes in Gene Expression Levels of the Ecf Sigma Factor Bov1605 Under Ph Shift and Oxidative Stress in the Sheep Pathogen Brucella Ovis

Description: Brucella ovis is a sexually transmitted, facultatively anaerobic, intracellular bacterial pathogen of sheep (Ovis aries) and red deer (Cervus elaphus). Brucella spp. infect primarily by penetrating the mucosa and are phagocytized by host macrophages, where survival and replication occurs. At least in some species, it has been shown that entry into stationary phase is necessary for successful infection. Brucella, like other alphaproteobacteria, lack the canonical stationary phase sigma factor ?s. Research on diverse members of this large phylogenetic group indicate the widespread presence of a conserved four-gene set including an alternative ECF sigma factor, an anti-sigma factor, a response regulator (RR), and a histidine kinase (HK). The first description of the system was made in Methylobacterium extorquens where the RR, named PhyR, was found to regulate the sigma factor activity by sequestering the anti-sigma factor in a process termed "sigma factor mimicry." These systems have been associated with various types of extracellular stress responses in a number of environmental bacteria. I hypothesized that homologous genetic sequences (Bov_1604-1607), which are similarly found among all Brucella species, may regulate survival functions during pathogenesis. To further explore the involvement of this system to conditions analogous to those occurring during infection, pure cultures of B. ovis cells were subjected to environments of pH (5 and 7) for 15, 30, and 45 minutes and oxidative (50mM H2O2) stress, or Spermine NONOate for 60 minutes. RNA was extracted and converted to cDNA andchanges in transcript levels of the sigma factor Bov1605 were measured using qPCR. Preliminary results indicate that under the exposure to Spermine NONOate there was little change in expression, but under oxidative stress expression of the sigma factor Bov1605 was 4.68-fold higher than that expressed under normal conditions. These results suggest that the sigma factor Bov1605 may be involved in oxidative stress defense during ...
Date: December 2012
Creator: Kiehler, Brittany Elaine
Partner: UNT Libraries

A Computer Assisted Micro-Dye Uptake Interferon Assay System

Description: A new rapid computer assisted micro-titer plate interferon assay system was developed and characterized for use in high capacity clinical and research applications. The biological aspect of the assay was a modification of the assay methods of Finter, Armstrong and McManus. It was an application of spectrophotometric quantification of the reduction of viral cytopathic effect (CPE) as reflected by neutral red dye uptake by viable cells. A computer program was developed for the extrapolation of raw data to reference interferon units.
Date: August 1981
Creator: Duvall, John C.
Partner: UNT Libraries

Construction of a Pseudomonas aeruginosa Dihydroorotase Mutant and the Discovery of a Novel Link between Pyrimidine Biosynthetic Intermediates and the Ability to Produce Virulence Factors

Description: The ability to synthesize pyrimidine nucleotides is essential for most organisms. Pyrimidines are required for RNA and DNA synthesis, as well as cell wall synthesis and the metabolism of certain carbohydrates. Recent findings, however, indicate that the pyrimidine biosynthetic pathway and its intermediates maybe more important for bacterial metabolism than originally thought. Maksimova et al., 1994, reported that a P. putida M, pyrimidine auxotroph in the third step of the pathway, dihydroorotase (DHOase), failed to produce the siderophore pyoverdin. We created a PAO1 DHOase pyrimidine auxotroph to determine if this was also true for P. aeruginosa. Creation of this mutant was a two-step process, as P. aeruginosa has two pyrC genes (pyrC and pyrC2), both of which encode active DHOase enzymes. The pyrC gene was inactivated by gene replacement with a truncated form of the gene. Next, the pyrC2 gene was insertionally inactivated with the aacC1 gentamicin resistance gene, isolated from pCGMW. The resulting pyrimidine auxotroph produced significantly less pyoverdin than did the wild type. In addition, the mutant produced 40% less of the phenazine antibiotic, pyocyanin, than did the wild type. As both of these compounds have been reported to be vital to the virulence response of P. aeruginosa, we decided to test the ability of the DHOase mutant strain to produce other virulence factors as well. Here we report that a block in the conversion of carbamoyl aspartate (CAA) to dihydroorotate significantly impairs the ability of P. aeruginosa to affect virulence. We believe that the accumulation of CAA in the cell is the root cause of this observed defect. This research demonstrates a potential role for pyrimidine intermediates in the virulence response of P. aeruginosa and may lead to novel targets for chemotherapy against P. aeruginosa infections.
Date: August 2003
Creator: Brichta, Dayna Michelle
Partner: UNT Libraries

Investigating the Ability of Pseudomonas aeruginosa pyrE Mutants to Grow and Produce Virulence Factors

Description: Pseudomonas aeruginosa are medically important bacteria that are notorious for causing nosocomial infections. To gain more knowledge into understanding how this organism operates, it was decided to explore the pyrimidine biosynthetic pathway. Pyrimidine synthesis, being one half of the DNA structure, makes it a very important pathway to the organism’s survivability. With previous studies being done on various genes in the pathway, pyrE has not been studied to the fullest extent. To study the function of pyrE, a site directed mutagenesis was done to completely knock out pyrE, which encodes the protein orotate phosphoribosyl transferase that is responsible for converting orotate into orotate monophosphate (OMP). A mutation in this step leads to accumulation and secretion of orotate into the medium. Analyzing virulence factors produced by the mutant and comparing to the wild type, some intriguing features of the mutant were discovered. One of the findings was the over expression of virulence factors pyoverdin and pyocyanin. Pyocyanin over expression, based on the results of this study, is due to the accumulation of orotate while over production of pyoverdin is due to the accumulation of dihydroorotate. The other virulence factors studied were motility assays, exoproducts, and growth analysis. All virulence factor production was reduced significantly in the mutant compared to the wild type. The casein protease assay showed absolutely no production of proteases in the mutant. The conclusion is that orotate accumulation leads to a significant reduction in virulence factor production in Pseudomonas aeruginosa. In addition to that, it was found that excess orotate in the wild type led to a decrease in quorum sensing regulated products.
Date: December 2014
Creator: Niazy, Abdurahman
Partner: UNT Libraries

A New LC Column for the Separation and the Quantitation of Nucleotides

Description: A new column, Dionex AS4A, (polystyrenedivinylbenzene matrix) used for the separation of ribonucleotides and deoxyribonucleotides for the first time, and previously used for ion analysis was found superior to conventional silica columns because it separates ribonucleotides and deoxyribonucleotides. Resolution of dGTP was not possible with the Dionex column and CTP and GDP often co-eluted. Using conventional silica columns, monophosphates separated from diphosphates and diphosphates from triphosphates. Using the new Dionex column resolves all three simultaneously. The Dionex column resolved nucleotides with sharper peaks than silica columns, and the longer its retention time the better was the resolution. This Dionex column is stable, with 80 runs possible without cleaning while resolving ribonucleotides and deoxyribonucleotides to the picomole level.
Date: December 1987
Creator: Brock, Patricia C. (Patricia Charlene)
Partner: UNT Libraries