UNT Theses and Dissertations - 394 Matching Results

Search Results

Results in Algebraic Determinedness and an Extension of the Baire Property

Description: In this work, we concern ourselves with particular topics in Polish space theory. We first consider the space A(U) of complex-analytic functions on an open set U endowed with the usual topology of uniform convergence on compact subsets. With the operations of point-wise addition and point-wise multiplication, A(U) is a Polish ring. Inspired by L. Bers' algebraic characterization of the relation of conformality, we show that the topology on A(U) is the only Polish topology for which A(U) is a Polish ring for a large class of U. This class of U includes simply connected regions, simply connected regions excluding a relatively discrete set of points, and other domains of usual interest. One thing that we deduce from this is that, even though C has many different Polish field topologies, as long as it sits inside another Polish ring with enough complex-analytic functions, it must have its usual topology. In a different direction, we show that the bounded complex-analytic functions on the unit disk admits no Polish topology for which it is a Polish ring. We also study the Lie ring structure on A(U) which turns out to be a Polish Lie ring with the usual topology. In this case, we restrict our attention to those domains U that are connected. We extend a result of I. Amemiya to see that the Lie ring structure is determined by the conformal structure of U. In a similar vein to our ring considerations, we see that, again for certain domains U of usual interest, the Lie ring A(U) has a unique Polish topology for which it is a Polish Lie ring. Again, the Lie ring A(U) imposes topological restrictions on C. That is, C must have its usual topology when sitting inside any Polish Lie ring isomorphic to A(U). In the last ...
Date: May 2017
Creator: Caruvana, Christopher
Partner: UNT Libraries

Partition Properties for Non-Ordinal Sets under the Axiom of Determinacy

Description: In this paper we explore coloring theorems for the reals, its quotients, cardinals, and their combinations. This work is done under the scope of the axiom of determinacy. We also explore generalizations of Mycielski's theorem and show how these can be used to establish coloring theorems. To finish, we discuss the strange realm of long unions.
Date: May 2017
Creator: Holshouser, Jared Kenneth
Partner: UNT Libraries

A Decomposition of the Group Algebra of a Hyperoctahedral Group

Description: The descent algebra of a Coxeter group is a subalgebra of the group algebra with interesting representation theoretic properties. For instance, the natural map from the descent algebra of the symmetric group to the character ring is a surjective algebra homomorphism, so the descent algebra implicitly encodes information about the representations of the symmetric group. However, this property does not hold for other Coxeter groups. Moreover, a complete set of primitive idempotents in the descent algebra of the symmetric group leads to a decomposition of the group algebra as a direct sum of induced linear characters of centralizers of conjugacy class representatives. In this dissertation, I consider the hyperoctahedral group. When the descent algebra of a hyperoctahedral group is replaced with a generalization called the Mantaci-Reutenauer algebra, the natural map to the character ring is surjective. In 2008, Bonnafé asked whether a complete set of idempotents in the Mantaci-Reutenauer algebra could lead to a decomposition of the group algebra of the hyperoctahedral group as a direct sum of induced linear characters of centralizers. In this dissertation, I will answer this question positively and go through the construction of the idempotents, conjugacy class representatives, and linear characters required to do so.
Date: December 2016
Creator: Tomlin, Drew E
Partner: UNT Libraries

Contributions to Descriptive Set Theory

Description: Assume AD+V=L(R). In the first chapter, let W^1_1 denote the club measure on \omega_1. We analyze the embedding j_{W^1_1}\restr HOD from the point of view of inner model theory. We use our analysis to answer a question of Jackson-Ketchersid about codes for ordinals less than \omega_\omega. In the second chapter, we provide an indiscernibles analysis for models of the form L[T_n,x]. We use our analysis to provide new proofs of the strong partition property on \delta^1_{2n+1}
Date: December 2016
Creator: Dance, Cody
Partner: UNT Libraries

Rankin-Cohen Brackets for Hermitian Jacobi Forms and Hermitian Modular Forms

Description: In this thesis, we define differential operators for Hermitian Jacobi forms and Hermitian modular forms over the Gaussian number field Q(i). In particular, we construct Rankin-Cohen brackets for such spaces of Hermitian Jacobi forms and Hermitian modular forms. As an application, we extend Rankin's method to the case of Hermitian Jacobi forms. Finally we compute Fourier series coefficients of Hermitian modular forms, which allow us to give an example of the first Rankin-Cohen bracket of two Hermitian modular forms. In the appendix, we provide tables of Fourier series coefficients of Hermitian modular forms and also the computer source code that we used to compute such Fourier coefficients.
Date: December 2016
Creator: Martin, James D
Partner: UNT Libraries

Quantum Drinfeld Hecke Algebras

Description: Quantum Drinfeld Hecke algebras extend both Lusztig's graded Hecke algebras and the symplectic reflection algebras of Etingof and Ginzburg to the quantum setting. A quantum (or skew) polynomial ring is generated by variables which commute only up to a set of quantum parameters. Certain finite groups may act by graded automorphisms on a quantum polynomial ring and quantum Drinfeld Hecke algebras deform the natural semi-direct product. We classify these algebras for the infinite family of complex reflection groups acting in arbitrary dimension. We also classify quantum Drinfeld Hecke algebras in arbitrary dimension for the infinite family of mystic reflection groups of Kirkman, Kuzmanovich, and Zhang, who showed they satisfy a Shephard-Todd-Chevalley theorem in the quantum setting. Using a classification of automorphisms of quantum polynomial rings in low dimension, we develop tools for studying quantum Drinfeld Hecke algebras in 3 dimensions. We describe the parameter space of such algebras using special properties of the quantum determinant in low dimension; although the quantum determinant is not a homomorphism in general, it is a homomorphism on the finite linear groups acting in dimension 3.
Date: August 2016
Creator: Uhl, Christine
Partner: UNT Libraries

Irreducible Modules for Yokonuma-Type Hecke Algebras

Description: Yokonuma-type Hecke algebras are a class of Hecke algebras built from a Type A construction. In this thesis, I construct the irreducible representations for a class of generic Yokonuma-type Hecke algebras which specialize to group algebras of the complex reflection groups and to endomorphism rings of certain permutation characters of finite general linear groups.
Date: August 2016
Creator: Dave, Ojas
Partner: UNT Libraries

Continuous Combinatorics of a Lattice Graph in the Cantor Space

Description: We present a novel theorem of Borel Combinatorics that sheds light on the types of continuous functions that can be defined on the Cantor space. We specifically consider the part X=F(2ᴳ) from the Cantor space, where the group G is the additive group of integer pairs ℤ². That is, X is the set of aperiodic {0,1} labelings of the two-dimensional infinite lattice graph. We give X the Bernoulli shift action, and this action induces a graph on X in which each connected component is again a two-dimensional lattice graph. It is folklore that no continuous (indeed, Borel) function provides a two-coloring of the graph on X, despite the fact that any finite subgraph of X is bipartite. Our main result offers a much more complete analysis of continuous functions on this space. We construct a countable collection of finite graphs, each consisting of twelve "tiles", such that for any property P (such as "two-coloring") that is locally recognizable in the proper sense, a continuous function with property P exists on X if and only if a function with a corresponding property P' exists on one of the graphs in the collection. We present the theorem, and give several applications.
Date: May 2016
Creator: Krohne, Edward William
Partner: UNT Libraries

The Relative Complexity of Various Classification Problems among Compact Metric Spaces

Description: In this thesis, we discuss three main projects which are related to Polish groups and their actions on standard Borel spaces. In the first part, we show that the complexity of the classification problem of continua is Borel bireducible to a universal orbit equivalence relation induce by a Polish group on a standard Borel space. In the second part, we compare the relative complexity of various types of classification problems concerning subspaces of [0,1]^n for all natural number n. In the last chapter, we give a topological characterization theorem for the class of locally compact two-sided invariant non-Archimedean Polish groups. Using this theorem, we show the non-existence of a universal group and the existence of a surjectively universal group in the class.
Date: May 2016
Creator: Chang, Cheng
Partner: UNT Libraries

An Exploration of the Word2vec Algorithm: Creating a Vector Representation of a Language Vocabulary that Encodes Meaning and Usage Patterns in the Vector Space Structure

Description: This thesis is an exloration and exposition of a highly efficient shallow neural network algorithm called word2vec, which was developed by T. Mikolov et al. in order to create vector representations of a language vocabulary such that information about the meaning and usage of the vocabulary words is encoded in the vector space structure. Chapter 1 introduces natural language processing, vector representations of language vocabularies, and the word2vec algorithm. Chapter 2 reviews the basic mathematical theory of deterministic convex optimization. Chapter 3 provides background on some concepts from computer science that are used in the word2vec algorithm: Huffman trees, neural networks, and binary cross-entropy. Chapter 4 provides a detailed discussion of the word2vec algorithm itself and includes a discussion of continuous bag of words, skip-gram, hierarchical softmax, and negative sampling. Finally, Chapter 5 explores some applications of vector representations: word categorization, analogy completion, and language translation assistance.
Date: May 2016
Creator: Le, Thu Anh
Partner: UNT Libraries

Optimal Strategies for Stopping Near the Top of a Sequence

Description: In Chapter 1 the classical secretary problem is introduced. Chapters 2 and 3 are variations of this problem. Chapter 2, discusses the problem of maximizing the probability of stopping with one of the two highest values in a Bernoulli random walk with arbitrary parameter p and finite time horizon n. The optimal strategy (continue or stop) depends on a sequence of threshold values (critical probabilities) which has an oscillating pattern. Several properties of this sequence have been proved by Dr. Allaart. Further properties have been recently proved. In Chapter 3, a gambler will observe a finite sequence of continuous random variables. After he observes a value he must decide to stop or continue taking observations. He can play two different games A) Win at the maximum or B) Win within a proportion of the maximum. In the first section the sequence to be observed is independent. It is shown that for each n>1, theoptimal win probability in game A is bounded below by (1-1/n)^{n-1}. It is accomplished by reducing the problem to that of choosing the maximum of a special sequence of two-valued random variables and applying the sum-the-odds theorem of Bruss (2000). Secondly, it is assumed the sequence is i.i.d. The best lower bounds are provided for the winning probabilities in game B given any continuous distribution. These bounds are the optimal win probabilities of a game A which was examined by Gilbert and Mosteller (1966).
Date: December 2015
Creator: Islas Anguiano, Jose Angel
Partner: UNT Libraries

Contributions to Descriptive Set Theory

Description: In this dissertation we study closure properties of pointclasses, scales on sets of reals and the models L[T2n], which are very natural canonical inner models of ZFC. We first characterize projective-like hierarchies by their associated ordinals. This solves a conjecture of Steel and a conjecture of Kechris, Solovay, and Steel. The solution to the first conjecture allows us in particular to reprove a strong partition property result on the ordinal of a Steel pointclass and derive a new boundedness principle which could be useful in the study of the cardinal structure of L(R). We then develop new methods which produce lightface scales on certain sets of reals. The methods are inspired by Jackson’s proof of the Kechris-Martin theorem. We then generalize the Kechris-Martin Theorem to all the Π12n+1 pointclasses using Jackson’s theory of descriptions. This in turns allows us to characterize the sets of reals of a certain initial segment of the models L[T2n]. We then use this characterization and the generalization of Kechris-Martin theorem to show that the L[T2n] are unique. This generalizes previous work of Hjorth. We then characterize the L[T2n] in term of inner models theory, showing that they actually are constructible models over direct limit of mice with Woodin cardinals, a counterpart to Steel’s result that the L[T2n+1] are extender models, and finally show that the generalized contiuum hypothesis holds in these models, solving a conjecture of Woodin.
Date: August 2015
Creator: Atmai, Rachid
Partner: UNT Libraries

Restricting Invariants and Arrangements of Finite Complex Reflection Groups

Description: Suppose that G is a finite, unitary reflection group acting on a complex vector space V and X is a subspace of V. Define N to be the setwise stabilizer of X in G, Z to be the pointwise stabilizer, and C=N/Z. Then restriction defines a homomorphism from the algebra of G-invariant polynomial functions on V to the algebra of C-invariant functions on X. In my thesis, I extend earlier work by Douglass and Röhrle for Coxeter groups to the case where G is a complex reflection group of type G(r,p,n) in the notation of Shephard and Todd and X is in the lattice of the reflection arrangement of G. The main result characterizes when the restriction mapping is surjective in terms of the exponents of G and C and their reflection arrangements.
Date: August 2015
Creator: Berardinelli, Angela
Partner: UNT Libraries

Trees and Ordinal Indices in C(K) Spaces for K Countable Compact

Description: In the dissertation we study the C(K) spaces focusing on the case when K is countable compact and more specifically, the structure of C() spaces for < ω1 via special type of trees that they contain. The dissertation is composed of three major sections. In the first section we give a detailed proof of the theorem of Bessaga and Pelczynski on the isomorphic classification of C() spaces. In due time, we describe the standard bases for C(ω) and prove that the bases are monotone. In the second section we consider the lattice-trees introduced by Bourgain, Rosenthal and Schechtman in C() spaces, and define rerooting and restriction of trees. The last section is devoted to the main results. We give some lower estimates of the ordinal-indices in C(ω). We prove that if the tree in C(ω) has large order with small constant then each function in the root must have infinitely many big coordinates. Along the way we deduce some upper estimates for c0 and C(ω), and give a simple proof of Cambern's result that the Banach-Mazur distance between c0 and c = C(ω) is equal to 3.
Date: August 2015
Creator: Dahal, Koshal Raj
Partner: UNT Libraries

Reduced Ideals and Periodic Sequences in Pure Cubic Fields

Description: The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in the rings and sub-rings of integers in quadratic fields with periodicity in continued fraction expansions of quadratic numbers. In this thesis, we develop cubic analogs for several infrastructure theorems. We work in the field K=Q(), where 3=m for some square-free integer m, not congruent to ±1, modulo 9. First, we generalize the definition of a reduced ideal so that it applies to K, or to any number field. Then we show that K has only finitely many reduced ideals, and provide an algorithm for listing them. Next, we define a sequence based on the number alpha that is periodic and corresponds to the finite set of reduced principal ideals in K. Using this rudimentary infrastructure, we are able to establish results about fundamental units and reduced ideals for some classes of pure cubic fields. We also introduce an application to Diophantine approximation, in which we present a 2-dimensional analog of the Lagrange value of a badly approximable number, and calculate some examples.
Date: August 2015
Creator: Jacobs, G. Tony
Partner: UNT Libraries

Condition-dependent Hilbert Spaces for Steepest Descent and Application to the Tricomi Equation

Description: A steepest descent method is constructed for the general setting of a linear differential equation paired with uniqueness-inducing conditions which might yield a generally overdetermined system. The method differs from traditional steepest descent methods by considering the conditions when defining the corresponding Sobolev space. The descent method converges to the unique solution to the differential equation so that change in condition values is minimal. The system has a solution if and only if the first iteration of steepest descent satisfies the system. The finite analogue of the descent method is applied to example problems involving finite difference equations. The well-posed problems include a singular ordinary differential equation and Laplace’s equation, each paired with respective Dirichlet-type conditions. The overdetermined problems include a first-order nonsingular ordinary differential equation with Dirichlet-type conditions and the wave equation with both Dirichlet and Neumann conditions. The method is applied in an investigation of the Tricomi equation, a long-studied equation which acts as a prototype of mixed partial differential equations and has application in transonic flow. The Tricomi equation has been studied for at least ninety years, yet necessary and sufficient conditions for existence and uniqueness of solutions on an arbitrary mixed domain remain unknown. The domains of interest are rectangular mixed domains. A new type of conditions is introduced. Ladder conditions take the uncommon approach of specifying information on the interior of a mixed domain. Specifically, function values are specified on the parabolic portion of a mixed domain. The remaining conditions are specified on the boundary. A conjecture is posed and states that ladder conditions are necessary and sufficient for existence and uniqueness of a solution to the Tricomi equation. Numerical experiments, produced by application of the descent method, provide strong evidence in support of the conjecture. Ladder conditions allow for a continuous deformation from Dirichlet ...
Date: August 2014
Creator: Montgomery, Jason W.
Partner: UNT Libraries

Hermitian Jacobi Forms and Congruences

Description: In this thesis, we introduce a new space of Hermitian Jacobi forms, and we determine its structure. As an application, we study heat cycles of Hermitian Jacobi forms, and we establish a criterion for the existence of U(p) congruences of Hermitian Jacobi forms. We demonstrate that criterion with some explicit examples. Finally, in the appendix we give tables of Fourier series coefficients of several Hermitian Jacobi forms.
Date: August 2014
Creator: Senadheera, Jayantha
Partner: UNT Libraries

A Comparison of Velocities Computed by Two-Dimensional Potential Theory and Velocities Measured in the Vicinity of an Airfoil

Description: In treating the motion of a fluid mathematically, it is convenient to make some simplifying assumptions. The assumptions which are made will be justifiable if they save long and laborious computations in practical problems, and if the predicted results agree closely enough with experimental results for practical use. In dealing with the flow of air about an airfoil, at subsonic speeds, the fluid will be considered as a homogeneous, incompressible, inviscid fluid.
Date: June 1947
Creator: Copp, George
Partner: UNT Libraries

Some Effects of the War Upon the Mathematics Curriculum and the Motivating Forces at Work as Reflected in the Dallas City Schools

Description: "To discuss the effect all this war activity has had upon the Dallas Schools and to voice a protest against those who seek to discredit mathematics and at the same time to contribute a readable thesis upon the subject is largely the purpose of this study." --leaf 2
Date: August 1945
Creator: Smith, R. N.
Partner: UNT Libraries

Absolute Continuity and the Integration of Bounded Set Functions

Description: The first chapter gives basic definitions and theorems concerning set functions and set function integrals. The lemmas and theorems are presented without proof in this chapter. The second chapter deals with absolute continuity and Lipschitz condition. Particular emphasis is placed on the properties of max and min integrals. The third chapter deals with approximating absolutely continuous functions with bounded functions. It also deals with the existence of the integrals composed of various combinations of bounded functions and finitely additive functions. The concluding theorem states if the integral of the product of a bounded function and a non-negative finitely additive function exists, then the integral of the product of the bounded function with an absolutely continuous function exists over any element in a field of subsets of a set U.
Date: May 1975
Creator: Allen, John Houston
Partner: UNT Libraries

A Partial Characterization of Upper Semi-Continuous Decompositions

Description: The goal of this paper is to characterize, at least partially, upper semi-continuous decompositions of topological spaces and the role that upper semi-continuity plays in preserving certain topological properties under decomposition mappings. Attention is also given to establishing what role upper semi-continuity plays in determining conditions under which decomposition spaces possess certain properties. A number of results for non-upper semi-continuous decompositions are included to help clarify the scope of the part upper semi-continuity plays in determining relationships between topological spaces and their decomposition spaces.
Date: December 1973
Creator: Dennis, William Albert
Partner: UNT Libraries

Proofs of Some Limit Theorems in Probability

Description: This study gives detailed proofs of some limit theorems in probability which are important in theoretical and applied probability, The general introduction contains definitions and theorems that are basic tools of the later development. Included in this first chapter is material concerning normal distributions and characteristic functions, The second chapter introduces lower and upper bounds of the ratio of the binomial distribution to the normal distribution., Then these bound are used to prove the local Deioivre-Laplace limit theorem. The third chapter includes proofs of the central limit theorems for identically distributed and non-identically distributed random variables,
Date: December 1974
Creator: Hwang, E-Bin
Partner: UNT Libraries

Valuations and Valuation Rings

Description: This paper is an investigation of several basic properties of ordered Abelian groups, valuations, the relationship between valuation rings, valuations, and their value groups and valuation rings. The proofs to all theorems stated without proof can be found in Zariski and Samuel, Commutative Algebra, Vol. I, 1858. In Chapter I several basic theorems which are used in later proofs are stated without proof, and we prove several theorems on the structure of ordered Abelian groups, and the basic relationships between these groups, valuations, and their valuation rings in a field. In Chapter II we deal with valuation rings, and relate the structure of valuation rings to the structure of their value groups.
Date: August 1975
Creator: Badt, Sig H.
Partner: UNT Libraries

Linear Operators

Description: This paper is a study of linear operators defined on normed linear spaces. A basic knowledge of set theory and vector spaces is assumed, and all spaces considered have real vector spaces. The first chapter is a general introduction that contains assumed definitions and theorems. Included in this chapter is material concerning linear functionals, continuity, and boundedness. The second chapter contains the proofs of three fundamental theorems of linear analysis: the Open Mapping Theorem, the Hahn-Banach Theorem, and the Uniform Boundedness Principle. The third chapter is concerned with applying some of the results established in earlier chapters. In particular, the concepts of compact operators and Schauder bases are introduced, and a proof that an operator is compact if and only if its adjoint is compact is included. This chapter concludes with a proof of an important application of the Open Mapping Theorem, namely, the Closed Graph Theorem.
Date: December 1975
Creator: Malhotra, Vijay Kumar
Partner: UNT Libraries