UNT Theses and Dissertations - 23 Matching Results

Search Results

Raman Studies of Molecular Dynamics and Interactions in Liquids

Description: In order to explore the N-H stretching region of aliphatic amines, we performed a study of the Raman spectrum of n-propylamine at various concentrations in cyclohexane. Statistical analysis provided evidence of a second symmetric stretching vibration, which we were able to assign to nonhydrogen bonded NH2 groups. To obtain additional evidence on the existence of monomers in n-propylamine and to further study hydrogen bonding and Fermi resonance in aliphatic amines, we extended the investigation to the analysis of the Raman spectrum of this compound over an extended range of temperature in the neat liquid phase. This study corroborated our finding that the peak previously assigned to the symmetric stretching mode of hydrogen bonded amines is actually composed of two bands. Furthermore, trends in both the resolved band parameters and the Fermi resonance analysis were tabulated, allowing one to monitor the change in the N-H valence region with concentration and temperature.
Date: May 1984
Creator: Friedman, Barry R. (Barry Richard)
Partner: UNT Libraries

Silene Stereochemistry

Description: The reaction of tert-butyllithium with chloromethylphenylvinylsilane at low temperatures in hexane gave a 48% yield of a mixture of the five isomers of 1,3-dimethyl-1,3-diphenyl-2,4-dineopentyl-1,3-disilacyclobutane, formed by the head-to-tail dimerization of both E- and Z-1-methyl-1-phenyl-2-neopentylsilenes, along with an acyclic dimer. These were separated and their stereochemistry was established by ('1)H- and ('13)C-NMR spectroscopy. The E- and Z-silenes were also trapped as their {4 + 2} cycloadducts with cyclopentadiene, 2,3-dimethyl-1,3-butadiene and anthracene, which also were separated and stereochemically characterized. A consistent mole ratio of 70:30 for the E- and Z-silene adducts is interpreted as evidence for stereochemical induction in the silene generation reaction. It is also suggested that the dimerization of the silenes to give the 1,3-disilacyclobutanes occurs by a nonstereospecific stepwise pathway. When E- or Z-1-methyl-1-phenyl-2-neopentylsilene was generated by the retro-Diels-Alder flow vacuum thermolysis of its corresponding cyclopentadiene or anthracene adduct at temperatures between 400 and 600(DEGREES)C and then trapped with 2,3-dimethyl-1,3-butadiene, the stereochemical distribution of the products is independent of the stereochemistry of the silene precursor, indicating that the silene is not configurationally stable towards cis-trans isomerization at these temperatures. Evidence that the intermolecular ene reaction and the {4 + 2} cycloaddition which occur with 2,3-dimethyl-1,3-butadiene are concerted is presented. When either the E- or Z-silene, generated by the sealed tube thermolysis of its anthracene adduct by 300(DEGREES)C, was trapped with trimethylmethoxysilene, the diastereomer obtained depended on the stereochemistry of the silene precursor, showing that the silene is configurationally stable towards cis-trans isomerization up to 300(DEGREES)C. The temperature dependence of the ratio of the two diastereomers obtained when the silene formed from the pure E- or Z-anthracene adduct was trapped at higher temperatures permitted the determination of an activation energy for the silene isomerization. The activation energies for the E- and Z- and Z- to E-silene isomerization are 45 (+OR-) ...
Date: August 1984
Creator: Lee, Myong Euy
Partner: UNT Libraries

Synthetic Applications of Ketene Cycloadditions Lactams and Coumarins

Description: The objective of this study was to develop new synthetical routes to natural and industrial products utilizing ketene cycioaddition reactions. The cycioaddition of diphenylketene with α,β-unsaturated imines yields (2+2) cycioaddition products, g-lactams. However, electron donating groups, such as dimethylamine, in the 4-position of the α,β-unsaturated imines result in (4+2) cycloaddition products, ∂-lactams. Dichloroketene reacted with α,β-unsaturated imines to yield (4+2) cycloaddition products, g-lactams. Large substituents in the 4-position of a, ^-unsaturated imines resulted in a (2+2) cycioaddition product, β-lactam. The ∂-lactams derived from dichloroketene are easily dehydrochlorinated to the corresponding 2-pyridornes.
Date: August 1984
Creator: Shieh, Chia Hui
Partner: UNT Libraries

Molecular Dynamics and Interactions in Liquids

Description: Various modern spectroscopies have been utilized with considerable success in recent years to probe the dynamics of vibrational and reorientational relaxation of molecules in condensed phases. We have studied the temperature dependence of the polarized and depolarized Raman spectra of various modes in the following dihalomethanes: dibromomethane, dichloromethane, dichloromethane-d2, and bromochloromethane. Among other observed trends, we have found the following: Vibrational dephasing times calculated from the bend) and (C-Br stretch) lineshapes are of the same magnitude in CI^B^. The vibrational dephasing time of [C-D(H) stretch] is twice as long in CD2Cl2 as in CH-^C^, and the relaxation time of (C-Cl stretch) is greater in CI^C^ than in CD2CI2. Isotropic relaxation times for all three stretching vibrations are significantly shorter in C^BrCl than in CI^C^ or CI^B^. Application of the Kubo model revealed that derived modulation times are close to equal for equivalent vibrations in the various dihalomethanes. Thus, the more efficient relaxation of the A^ modes in CE^BrCl can be attributed almost entirely to the broader mean squared frequency perturbation of the vibrations in this molecule.
Date: May 1985
Creator: Chen, Jen Hui
Partner: UNT Libraries

The Multi-reference Correlation Consistent Composite Approach: A New Vista In Quantitative Prediction Of Thermochemical And Spectroscopic Properties

Description: The multi-reference correlation consistent composite approach (MR-ccCA) was designed to reproduce the accuracy of more computationally intensive ab initio quantum mechanical methods like MR-ACPF-DK/aug-cc-pCV?Z-DK, albeit at a significantly reduced cost. In this dissertation, the development and applications of the MR-ccCA method and a variant of its single reference equivalent (the relativistic pseudopotential ccCA method) are reported. MR-ccCA is shown to predict the energetic properties of reactive intermediates, excited states species and transition states to within chemical accuracy (i.e. ±1.0 kcal mol 1) of reliable experimental values. The accuracy and versatility of MR-ccCA are also demonstrated in the prediction of the thermochemical and spectroscopic properties (such as atomization energies, enthalpies of formation and adiabatic transition energies of spin-forbidden excited states) of a series of silicon-containing compounds. The thermodynamic and kinetic feasibilities of the oxidative addition of an archetypal arylglycerol ?-aryl ether (?-O-4 linkage) substructure of lignin to Ni, Cu, Pd and Pt transition metal atoms using the efficient relativistic pseudopotential correlation consistent composite approach within an ONIOM framework (rp-ccCA-ONIOM), a multi-level multi-layer QM/QM method formulated to enhance the quantitative predictions of the chemical properties of heavy element-containing systems larger than hitherto attainable, are also reported.
Date: December 2011
Creator: Oyedepo, Gbenga A.
Partner: UNT Libraries

Synthesis and Characterization of Two and Three Coordinate Gold (I) Conjugated and Rigid Metallodendrimers

Description: This dissertation is a study of two major topics that involve synthetic strategies for new classes of phosphorescent gold(I)-based metallodendrimers. The phosphorescence of organic and inorganic luminophores originates from spin-orbit coupling owing to internal or external heavy atom effects as well as metal-centered emissions. Previous work in the Omary group entailed systematically designed small molecules, metallopolymers, and unconjugated metallodendrimers that contain d10 and d8 metals, whereas this dissertation aims in part to expand such strategies to the conjugated metallodendrimer regime. In one approach novel synthetic strategies were used to make first-generation phenyl acetylene dendrimers and phosphine derivatives thereof. The phosphine dendrimers are made by tethering one of the phosphines to an unsaturated dendrimer, as such phosphine dendrimers are better chromophores and luminophores due to their structural rigidity and extended conjugation. In another approach, 2- and 3-coordinate Au(I) dendritic complexes are synthesized from these phosphine dendrimers. This study is further extended to study metallodendritic complexes with different cores, for example triphenylene-based metallodendritic complexes with six acetylene branches. The physical properties of the metallodendrimers can be modulated upon proceeding to further dendrimer generations or by using solubilizing groups on the peripheral phosphines, thus allowing better processability for thin-film fabrication as required for molecular electronic devices and higher chance for crystal growth toward accurate structural characterization. Other data produced in this project suggested that some structural alterations led to porous solids that render them suitable for realized and potential applications in energy storage and carbon capture. The interesting luminescence properties of the metallodendrimers and porous extended solids produced in this dissertation are significant toward utilizing such materials for optoelectronic applications such as energy-saving organic light-emitting diodes and optical sensors for environmental pollutants.
Date: August 2012
Creator: Kaipa, Ushasree
Partner: UNT Libraries

A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices

Description: The characterization of 2,3,6,7,10,11-hexabromotriphenylene, Br6TP, is presented toward its potential use as an n-type organic semiconductor and metal-free room temperature phosphor. The crystal structure shows both anisotropic two-dimensional BrBr interactions and inter-layer ?-stacking interactions. Photophysical characteristics were evaluated using solid-state photoluminescence and diffuse reflectance spectroscopies, revealing significantly red-shifted excitations in the visible region for the yellow solid material (compared to ultraviolet absorption bands for the colorless dilute solutions). Correlation of spectral, electrochemical, and computational data suggest the presence of an n-type semiconducting behavior due to the electron-poor aromatic ring. The material shows excellent thermal stability as demonstrated by thermogravimetric analysis and infrared spectra of a thin film deposited by thermal evaporation. The potential for Br6TP and its analogues toward use in several types of photonic and electronic devices is discussed.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: December 2012
Creator: Halbert, Jason Paul
Partner: UNT Libraries

Synthetic and Structural Chemistry of Ligand-substituted Triosmium Clusters and a Rhenium(i) Complex

Description: The reaction of 2-[(diphenylphosphino)methyl]-6-methylpyridine (PN) with Os3(CO)12-n(MeCN)n [where n = 0 (1), 1 (2), 2 (3)] has been investigated. Os3(CO)12 reacts with PN in the presence of Me3NO to afford the clusters Os3(CO)11(1-PN) (4) and 1,2-Os3(CO)10(1-PN)2 (5). X-ray diffraction analyses confirm the equatorial coordination of the phosphine(s) in 4 and 5, with the two phosphines in the latter cluster exhibiting a 1,2-trans orientation about the Os-Os vector that contains the two ligands. Treatment of the MeCN-substituted cluster Os3(CO)11(MeCN) and PN (1:1 ratio) in CH2Cl2 gives clusters 4 and 5, in addition to HOs3(η1-Cl)(CO)10(1-PN) (6) as a result of competitive activation of the reaction solvent. Cluster 6 contains 48e- and the diffraction structure reveals the presence of axial chloride and equatorial phosphine ligands which are located on adjacent osmium atoms. The bridging hydride ligand in 6 spans the Cl,P-substituted Os-Os vector. The reaction of Os3(CO)10(MeCN)2 with PN furnishes 5, 6, and 1,1-Os3(CO)10(2-PN) (7) in yields that are dependent on the reagent stoichiometry and reaction solvent. The solid-state structure of 7 confirms the chelation of the PN ligand to a single osmium atom via the pyridine and phosphine moieties at axial and equatorial sites, respectively. The bonding in 7 relative to other possible stereoisomers has been explored by DFT calculations, and the diffraction structure is computed as the thermodynamically most stable form of this cluster. Cluster 4 is photosensitive and CO loss gives 7, in addition to the formation of the dihydride H2Os3(CO)8[µ-CH(NC5H3)CH2PPh2] (8), whose origin derives from the double metalation of the C-6 methyl group of the PN ligand in 7. Photolysis of 7 yields 8 without detectable observation of the expected intermediate hydride HOs3(CO)9[µ-CH2(NC5H3)CH2PPh2]. The PN ligand in 7 undergoes P-C bond activation in toluene at 110 °C to afford the 50e cluster Os3(CO)9(µ-C6H4)(µ-PPh), which contains face-capping benzyne and phosphinidene ...
Date: August 2013
Creator: Lin, Chen-Hao
Partner: UNT Libraries

The Mechanisms of Methane C–H Activation and Oxy-insertion Via Small Transition Metal Complexes: a DFT Computational Investigation

Description: Our country continues to demand clean renewable energy to meet the growing energy needs of our time. Thus, natural gas, which is 87% by volume of methane, has become a hot topic of discussion because it is a clean burning fuel. However, the transportation of methane is not easy because it is a gas at standard temperature and pressure. The usage of transition metals for the conversion of small organic species like methane into a liquid has been a longstanding practice in stoichiometric chemistry. Nonetheless, the current two-step process takes place at a high temperature and pressure for the conversion of methane and steam to methanol via CO + H2 (syngas). The direct oxidation of methane (CH4) into methanol (CH3OH) via homogeneous catalysis is of interest if the system can operate at standard pressure and a temperature less than 250 C. Methane is an inert gas due to the high C-H bond dissociation energy (BDE) of 105 kcal/mol. This dissertation discusses a series of computational investigations of oxy-insertion pathways to understand the essential chemistry behind the functionalization of methane via the use of homogeneous transition metal catalysis. The methane to methanol (MTM) catalytic cycle is made up of two key steps: (1) C-H activation by a metal-methoxy complex, (2) the insertion of oxygen into the metal−methyl bond (oxy-insertion). While, the first step (C-H activation) has been well studied, the second step has been less studied. Thus, this dissertation focuses on oxy-insertion via a two-step mechanism, oxygen-atom transfer (OAT) and methyl migration, utilizing transition metal complexes known to activate small organic species (e.g., PtII and PdII complexes). This research seeks to guide experimental investigations, and probe the role that metal charge and coordination number play.
Date: May 2014
Creator: Prince, Bruce M.
Partner: UNT Libraries

Targeted and Metal-loaded Polymeric Nanoparticles As Potential Cancer Therapeutics

Description: Polymeric nanoparticles were designed, synthesized, and loaded with metal ions to explore the therapeutic potential for transition metals other than platinum found in cisplatin. Nanoparticles were synthesized to show the potential for polymer based vectors. Metal loading and release were characterized via Inductively Coupled Plasma Mass Spectrometry (ICP MS), Energy Dispersive X-Ray Spectroscopy (EDX), X-Ray Photoelectron Spectroscopy (XPS), and Elemental Analysis. Targeting was attempted with the expectation of observed increased particle uptake by cancer cells with flow cytometry and fluorescence microscopy. Results demonstrated that a variety of metals could be loaded to the nano-sized carriers in an aqueous environment, and that the release was pH-dependent. Expected increased targeting was inconsistent. The toxicity of these particles was measured in cancer cells where significant toxicity was observed in vitro via dosing of high copper-loaded nanoparticles and slight toxicity was observed in ruthenium-loaded nanoparticles. No significant toxicity was observed in cells dosed with metal-free nanoparticles. Future research will focus on ruthenium loaded polymeric nanoparticles with different targeting ligands dosed to different cell lines for the aim of increased uptake and decreased cancer cell viability.
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2014
Creator: Harris, Alesha N.
Partner: UNT Libraries