UNT Theses and Dissertations - 2 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Ab Initio and Density Functional Investigation of the Conformer Manifold of Melatonin and a Proposal for a Simple Dft-based Diagnostic for Nondynamical Correlation

Description: In this work we address two problems in computational chemistry relevant to biomolecular modeling. In the first project, we consider the conformer space of melatonin as a a representative example of “real-life” flexible biomolecules. Geometries for all 52 unique conformers are optimized using spin-component scaled MP2, and then relative energies are obtained at the CCSD (T) level near the complete basis set limit. These are then used to validate a variety of DFT methods with and without empirical dispersion corrections, as well as some lower-level ab initio methods. Basis set convergence is found to be relatively slow due to internal C-H…O and C-H…N contacts. Absent dispersion corrections, many DFT functionals will transpose the two lowest conformers. Dispersion corrections resolve the problem for most functionals. Double hybrids yield particularly good performance, as does MP2.5. In the second project, we propose a simple DFT-based diagnostic for nondynamical correlation effects. Aλ= (1-TAE [ΧλC]/TAE[XC])/λ where TAE is the total atomization energy, XC the “pure” DFT exchange-correlation functional, and ΧλC the corresponding hybrid with 100λ% HF-type exchange. The diagnostic is a good predictor for sensitivity of energetics to the level of theory, unlike most of the wavefunction-based diagnostics. For GGA functionals, Aλ values approaching unity indicate severe non-dynamical correlation. The diagnostic is only weakly sensitive to the basis set (beyond polarized double zeta) and can be applied to problems beyond practical reach of wavefunction ab-initio methods required for other diagnostics.
Date: August 2013
Creator: Fogueri, Uma
Partner: UNT Libraries

The One Electron Basis Set: Challenges in Wavefunction and Electron Density Calculations

Description: In the exploration of chemical systems through quantum mechanics, accurate treatment of the electron wavefunction, and the related electron density, is fundamental to extracting information concerning properties of a system. This work examines challenges in achieving accurate chemical information through manipulation of the one-electron basis set.
Date: May 2016
Creator: Mahler, Andrew
Partner: UNT Libraries