Search Results

Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index
A method was developed for extending a fine-scaled forest gap model to a watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case study for the method. A topographic wetness index calculated from digital elevation data was used as a measure of hydrologic across the modeled landscape, and the gap model modified to have with a topographically-based hydrologic input parameter. The model was parameterized by terrain type units that were defined using combinations of USDA soil series and classes of the topographic wetness index. A number of issues regarding the sources, grid resolutions, and processing methods of the digital elevation data are addressed in this application of the topographic wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived and contour-derived elevation grids were used, and the grids were processed using both single-directional flow algorithm and bi-directional flow algorithm. The result of these different grids were compared and analyzed in context of their application in defining terrain types for the forest gap model. Refinements were made in the timescale of gap model’s weather model, converting it into a daily weather generator, in order to incorporate the effects of the new topographic/hydrologic input parameter. The precipitation model was converted to use a Markov model to initiate a sequence of wet and dry days for each month, and then daily precipitation amounts were determined using a gamma distribution. The output of the new precipitation model was analyzed and compared with a 100-year history of daily weather records at daily, monthly, and annual timescales. Model assumptions and requirements for biological parameters were thoroughly investigated and questioned. Often these biological parameters are based on little more than assumptions and intuition. An effort to base as many of the model’s biological parameters on measured data was made, including a new …
The Influence of Urban Green Spaces on Declining Bumble Bees (Hymenoptera: Apidae)
Bumble bees (Bombus spp.) are adept pollinators of countless cultivated and wild flowering plants, but many species have experienced declines in recent decades. Though urban sprawl has been implicated as a driving force of such losses, urban green spaces hold the potential to serve as habitat islands for bumble bees. As human populations continue to grow and metropolitan areas become larger, the survival of many bumble bee species will hinge on the identification and implementation of appropriate conservation measures at regional and finer scales. North Texas is home to some the fastest-growing urban areas in the country, including Denton County, as well as at least two declining bumble bee species (B. pensylvanicus and B. fraternus). Using a combination of field , molevular DNA and GIS methods I evaluated the persistence of historic bumble bee species in Denton County, and investigated the genetic structure and connectivity of the populations in these spaces. Field sampling resulted in the discovery of both B. pensylvanicus and B. fraternus in Denton County's urban green spaces. While the relative abundance of B. fraternus in these spaces was significantly lower than historic levels gleaned from museum recors, that of B. pensylvanicus was significantly higher. Statistical analyses found that both bare ground and tree cover surrounding sample sites were negatively associated with numbers of bumble bee individuals and hives detected in these green spaces. Additionally, limited genetic structuring of bumble bee populations was detected, leading to the conclusion that extensive gene flow is occurring across populations in Denton County.
Informing Conservation Management Using Genetic Approaches: Greater Sage-Grouse and Galápagos Short-Eared Owls as Case Studies
Small isolated populations are of particular conservation interest due to their increased extinction risk. This dissertation investigates two small wild bird populations using genetic approaches to inform their conservation. Specifically, one case study investigated a Greater Sage-grouse (Centrocercus urophasianus) population located in northwest Wyoming near Jackson Hole and Grand Teton National Park. Microsatellite data showed that the Jackson sage-grouse population possessed significantly reduced levels of neutral genetic diversity and was isolated from other Wyoming populations. Analysis with single nucleotide polymorphisms (SNPs) and microsatellite data provided further evidence that the population's timing of isolation was relatively recent and most likely due to recent anthropogenic habitat changes. Conservation recommendations include maintaining or increasing the population's current size and reestablishing gene flow with the nearest large population. The second case study investigated the genetic distinctiveness of the Floreana island population of the Galápagos Short-eared Owl (Asio flammeus galapagoensis). Mitochondrial DNA sequence data did not detect differences across nine island populations, yet microsatellite and morphometric data indicated that limited gene flow existed with the population and surrounding island populations, which appeared asymmetric in direction from Floreana to Santa Cruz with no indication of gene flow into Floreana. These results have important conservation implications and recommend that the Floreana Short-eared Owl population be held in captivity during the rodenticide application planned for an ecosystem restoration project in 2018. The population is less likely to receive immigrants from surrounding island populations if negatively effected by feeding on poisoned rodents.
Long-Term Citizen Science Water Monitoring Data: An Exploration of Accuracy over Space and Time
The Texas Stream Team (TST) is one of an increasing number of citizen science water monitoring programs throughout the US which have been continuously collecting surface water quality data under quality assurance protocols for decades. Volunteer monitoring efforts have generated monitoring datasets that are long-term, continuous, and cover a large geographic area - characteristics shown to be valuable for scientists and professional agencies. However, citizen science data has been of limited use to researchers due to concerns about the accuracy of data collected by volunteers, and the decades of water quality monitoring data collected by TST volunteers is not widely used, if at all. A growing body of studies have attempted to address accuracy concerns by comparing volunteer data to professional data, but this has rarely been done with large-scale, existing datasets like those collected by TST. This study assesses the accuracy of the volunteer water quality data collected across the state of Texas by the TST citizen science program between 1992-2017 by comparing it to professional data from corresponding stations during the same time period, as well as comparing existing and experimental data from a local TST partner agency. The results indicate that even large-scale, existing volunteer and professional data with unpaired samples that may have been taken months apart can show statewide agreement of 80% for all parameters (DO = 77%, pH = 79%, conductivity = 85%) over the 38 years of sampling included in the analyses, across all locations. The local case study using paired datasets for which a greater number of factors were controlled for show an even higher agreement between volunteers and professionals (DO = 91%, pH = 87%, conductivity = 100%) and show no significant difference between experimental and existing sampling data. The results from this study indicate that TST has been collecting water …
Photo-induced Toxicity of Deepwater Horizon Spill Oil to Four Native Gulf of Mexico Species
The 2010 Deepwater Horizon oil spill resulted in the accidental release of millions of barrels of crude oil into the Gulf of Mexico (GoM). Photo-induced toxicity following co-exposure to ultraviolet (UV) radiation is one mechanism by which polycyclic aromatic hydrocarbons (PAHs) from oil spills may exert toxicity. Blue crab (Callinectes sapidus) are an important commercial and ecological resource in the Gulf of Mexico and their largely transparent larvae may make them sensitive to PAH photo-induced toxicity. Mahi-mahi (Coryphaena hippurus), an important fishery resource, have positively buoyant, transparent eggs. These characteristics may result in mahi-mahi embryos being at particular risk from photo-induced toxicity. Red drum (Sciaenops ocellatus) and speckled seatrout (Cynoscion nebulosus) are both important fishery resources in the GoM. They spawn near-shore and produce positively buoyant embryos that hatch into larvae in about 24 h. The goal of this body of work was to determine whether exposure to UV as natural sunlight enhances the toxicity of crude oil to early lifestage GoM species. Larval and embryonic organisms were exposed to several dilutions of water accommodated fractions (WAF) from several different oils collected in the field under chain of custody during the 2010 spill and two to three gradations of natural sunlight in a factorial design. Here, we report that co-exposure to natural sunlight and oil significantly reduced larval survival and embryo hatch compared to exposure to oil alone.
Back to Top of Screen